Brennwerttechnik

ebmpapst

Produktkatalog 2022-06

engineering a better life

EC-Radialventilatoren für die Brennwerttechnik

ebmpapst

engineering a better life

	Seite		Seit
Information	4	Über ebm-papst	
		GreenIntelligence	
		Gasbrennwerttechnik	
		Laborausstattung	1
		Brennwerttechnik-Systeme	1
		Unsere Systemlösungen	1
		EC-Radialventilatoren	1
EC-Radialventilatoren	18	Luftleistung und empfohlene Arbeitsbereiche	1
		High-efficiency Venturi	2
		RadiMix VG 71	2
		RadiMix VG 100	2
		RadiMix VG 108	2
		NRG 118	2
		RG 148	3
		NRG 137	3
		RG 175	3
		G1G 170	3
		G3G 200	3
		G3G 250	4
		VG 250	4
		VG 315	4
		VG 450	4
	48	Stecker	4
		Elektrische Schnittstellen	5
Ventile	54	G15/G20 E01	5
pneumatischer und elektronischer		G20 D01	5
Verbund		G15/G20 F01	6
		G32 F01	6
		G40 F01	6
Brennersteuerungen	66	Haustechnik – BCU 100	6
-		Gewerbliche Gebäudetechnik – BCU 900	6
Kontakte	70	Kontakte weltweit	7

GreenIntelligence. *Making Engineers Happy.*

Warum unsere Kunden so glücklich aussehen? Weil wir ihnen mit GreenIntelligence klare Wettbewerbsvorteile im Kontext von Digitalisierung und Nachhaltigkeit ermöglichen. Denn die intelligente Steuerung und Vernetzung von Ventilatoren und Antrieben macht Anwendungen leistungsfähiger und effizienter. Zusammen mit einer langen Produktlebensdauer und der hocheffizienten EC-Technologie reduzieren wir nachhaltig Energiekosten und Emissionen.

In der Heizungstechnik sind vor allem innovative, zuverlässige und energieeffiziente Produkte gefragt, mit denen man schnell am Markt ist. GreenIntelligence liefert Ihnen hierfür intelligent vernetzbare Systemlösungen, mit denen Serviceeinsätze bedarfsorientiert geplant und Varianzen reduziert werden können. Durch das Plattformprinzip sparen Sie zudem bei der Entwicklung viel Zeit und Geld.

ebm-papst. Engineering a better life.

Wer wir sind.

ebm-papst bietet mit mehr als 20.000 verschiedenen Produkten für praktisch jede Anforderung die passende Lösung. Als konsequente Weiterentwicklung unserer hocheffizienten GreenTech EC-Technologie sehen wir in der industriellen Digitalisierung die größten Zukunftschancen für unsere Kunden. Mit GreenIntelligence stehen wir schon heute für intelligent vernetzte Komplettlösungen, die weltweit einzigartig

Weil es unser Anspruch ist, dass jede unserer innovativen Hard- und Softwarelösungen immer leistungsstärker, kompakter, effizienter und nachhaltiger ist als ihr Vorgänger, sind wir über die Jahre zum globalen Technologieführer für Strömungs- und Antriebstechnik gewachsen.

Was uns antreibt.

Unser konsequentes Streben nach Effizienz und Fortschritt ist aber noch tiefer begründet. Schließlich gibt es etwas, das uns noch mehr begeistert als unsere Marktstellung. Es ist das tiefe Bewusstsein, dass wir mit unseren Lösungen, das Leben vieler Menschen rund um den Globus angenehmer, sicherer und somit besser machen. Unser zentraler Antrieb für all unser Denken und Handeln lautet deshalb **Engineering** a better life. Er ist die Antwort auf die Frage, warum es sich lohnt, dass wir jeden Tag aufstehen und unser Bestes geben.

Mehr dazu unter ebmpapst.com/betterlife

engineering a better life

Was Sie davon haben.

- Technologievorsprung.

 Mit unserer EC-Technik und GreenIntelligence verbinden wir höchste Energieeffizienz mit den Vorteilen von IoT und digitaler Vernetzung.
- Gelebte Nachhaltigkeit.
 Wir übernehmen Verantwortung mit energiesparenden Produkten, umweltschonenden Prozessen und durch gesellschaftliches Engagement.
- Systemkompetenz.

 Als Experten für hoch entwickelte Motortechnik, Elektronik und Aerodynamik bieten wir perfekte Systemlösungen aus einer Hand.

André setzt bei der Brennwerttechnik auf einbaufertige Systemlösungen und spart sich den auf-

Der ebm-papst Erfindergeist.

Mit mehr als 800 Ingenieuren und Technikern entwickeln wir genau die Lösung, die zu Ihren Anforderungen passt.

- Persönliche Nähe zu Ihnen.

 Durch zahlreiche Vertriebsstandorte weltweit.
- Unser Qualitätsanspruch.
 Wir betreiben ein kompromissloses Qualitätsmanagement in jedem Prozessschritt.

Mit GreenIntelligence erwecken wir Engineering a better life zum Leben.

Was bedeutet das genau? Jetzt Video ansehen:

wendigen Abstimmungsaufwand.

Gasbrennwerttechnik Das ist ebm-papst

Wir haben das weltweit erste Gasgebläse für die Brennwerttechnik entwickelt und sind seitdem Marktführer für effiziente Komponenten und komplette, optimal abgestimmte Systeme. Gebläse, Venturi, Ventil und Feuerungsautomat werden mit unseren Kunden zusammen entwickelt und als Einheit geliefert. Nutzen Sie lang bewährte und kontinuierlich weiterentwickelte Technik und unsere einzigartige Systemkompetenz.

Mehr als nur Verbrennung

Moderne Gasbrennwertgeräte sind bekannt für ihre gute Energieausnutzung. Sie müssen bei allen Betriebszuständen und Umgebungsbedingungen mit der optimalen Menge und Zusammensetzung von Gas und Luft versorgt werden. Nur so wird eine hygienische und effiziente Verbrennung gewährleistet. Kompakte Abmessungen sorgen dafür, dass der Bauraum minimiert und gleichzeitig die Zugänglichkeit verbessert wird.

ebm-papst bietet heute das weltweit umfangreichste Produktprogramm für die Brennwerttechnik. Ob wenige Kilowatt für den Einsatz in Privathaushalten oder mehrere Megawatt zur Versorgung von ganzen Wohnsiedlungen: wir haben die passende Lösung. Unser Portfolio umfasst effiziente EC-Radialventilatoren, Gasventile und optimal abgestimmte Systemlösungen für jeden Anwendungsfall.

Vorteile auf einen Blick

- System- und Entwicklungskompetenz vom Marktführer
- Konkurrenzloses Leistungs- und Modulationsspektrum
- Bewährte Technik mit langer Lebensdauer
- Hohe Leistungsdichte durch kompakte Bauweise
- $\ddot{\mathsf{U}} \mathsf{berragende} \ \mathsf{Effizienz} \ \mathsf{mit} \ \mathsf{hohem} \ \mathsf{Wirkungsgrad}$
- Abgestimmte Laufruhe mit niedrigem Geräuschpegel
- Vorabgestimmte Komponenten für die einfache Adaption an die jeweilige Anwendung
- Zukunftsfähig durch optionale BUS-Anbindung

Passend für alle Anwendungen

Gas-Brennwerttechnik-Residential

Gasbrennwertheizungen für Privathaushalte

Verwendung als reine Heizungsanwendung,

Kombiboiler oder in Kombination mit regenerativen Energien

2 kw

Gas-Brennwerttechnik-Commercial

Gasbrennwertheizungen für Anwendungen vom kleinen Handwerksbetrieb bis hin zur Heizanlage in der Großindustrie

Für Installation vom Einzelkessel bis hin zu kaskadierten Anlagen

Erstes Brennwertgebläse für Heizleistungen bis zu 4 MW vervollständigt das umfangreiche Produktportfolio

Für dezentrale Heizlösungen, bei denen im Vergleich zu großen Heizkraftwerken der bautechnische Aufwand sowie Wärmeverluste durch lange Leitungen minimiert werden können

Laborausstattung

Als Markt- und Technologieführer streben wir an, uns kontinuierlich zu verbessern und unseren Kunden immer die beste Lösung aus einer Hand zu bieten. Unsere Ingenieure und Techniker unterstützen unsere Kunden bei der Entwicklung ihrer Applikation von Anfang an und feilen mit Ihnen zusammen an der Weiterentwicklung. Bevor wir in Serie gehen, führen wir umfassende Tests zur Einhaltung gesetzlicher Vorschriften und kundenspezifischer Vorgaben durch. Hierfür stehen uns zahlreiche Messeinrichtungen zur

Verfügung. Wir prüfen beispielsweise Designeinflüsse wie Veränderungen an der Gas-Luft-Vermischung, an den Rückstromklappen oder am Venturi. Denn all das kann die Effizienz – aber auch die Geräuschentwicklung und die Funktionalität – einer Brennwertheizung beeinflussen. Wir messen dabei die Gas-Luft-Verbund-Systeme direkt im Heizgerät und stimmen die Komponenten und Motorleistungen optimal aufeinander ab. Parallel dazu werden Strömungssimulationen durchgeführt, deren Ergebnisse direkt mit einfließen.

Gaslabor:

- Modernste Messeinrichtungen mit allen in Europa,
 Amerika und Asien gängigen Test- und Grenzgasen
- Abgasmessungen (CO₂, CO, Luftzahl), Messungen mit variablen strömungstechnischen Parametern (Venturidruck, Massenstrom, Abgasgegendruck) zur Erhöhung und Optimierung des Modulationsbereichs
- Messung der thermischen und elektrischen Leistungsdaten
- Simulation von Wind und Turbulenzen im Abgasbereich,
 z. B. beim elektronischen Gas-Luft-Verbund
- Kommunikation mit allen gängigen BUS-Systemen wie
 z. B. CAN-Bus, LIN-Bus, Modbus, eBus, OpenTherm

Klimakammern:

- Umweltsimulation und Lebensdauertests mit über 30 Klima-, Kälte- und Wärmeschränken
- Simulation eines Temperaturbereichs von
 -70 °C bis 300 °C möglich

Luftleistungsprüfstände:

Prüfung des Betriebsverhaltens der Gebläse und Systeme mit Aufzeichnung der Luftleistungskennlinien Dauerversuchsräume:

Derzeit rund 150 verschiedene Dauerversuche mit über 700 Prüflingen aktiv

Geräuschmesslabor:

Präzise Schallleistungs- und Gasmesstechnik unter realen Bedingungen Rütteltest:

Für Transport- und Betriebssimulationen mit unterschiedlichen Vibrationsprofilen

EMV-Messraum:

Emissions- und Imissionsmessungen Zulassungen:

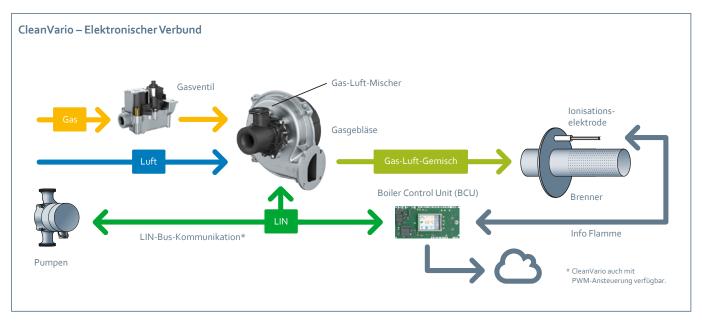
AGA, CCC, CSA, DVGW, EAC, KIWA, TÜV, UL, VDE Normen und Richtlinien:

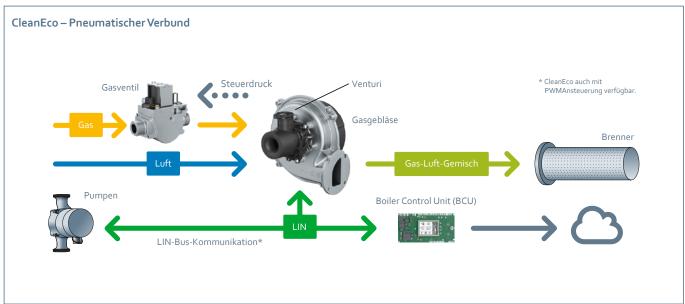
- Niederspannungsrichtlinie
- Maschinenrichtlinie
- EMV-Richtlinie
- Gasgebläseverordnung

Zusätzliche Ausstattung:

- 3D-Mikroskop
- 3D-Plotter

Gasventilprüfstände:


Für pneumatisch und elektronisch modulierende Gasventile


Brennwerttechnik-Systeme

Für die Energieausbeute bei der Verbrennung ist das optimale Mischungsverhältnis von Gas zu Luft entscheidend. Es muss exakt auf den Brennwert der verwendeten Gase (z. B. Erdgas, Flüssiggas, Wasserstoff oder Biogas) eingestellt werden. Eine weitere Herausforderung ist die Flexibilität der Heizleistung. Je größer der Modulationsbereich einer Heizung, desto besser kann die Heizleistung auf

den tatsächlich benötigten Bedarf eingestellt werden. Die Grenzen des Modulationsgrades werden dabei u. a. durch die minimale und maximale Leistung des Vormischgebläses bestimmt. Dazu müssen die einzelnen Komponenten ideal aufeinander abgestimmt sein. Deshalb bieten wir Ihnen komplette Heizsysteme inklusive Gasgebläse, Venturi, Gasventil und Brennersteuerung aus einer Hand.

Bestens geeignet für den Einsatz im elektronischen oder pneumatischen Verbund

Gebläse:

Modernste Gebläsetechnik für den modulierenden Betrieb mit niedrigem Geräusch und langer Lebensdauer

Venturi:

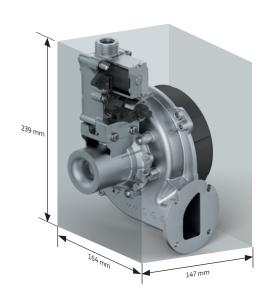
Der durch den Venturieffekt erzeugte Druck sorgt im pneumatischen Gas-Luft-Verbund für eine optimale Mischung aus Gas und Luft

Ventil:

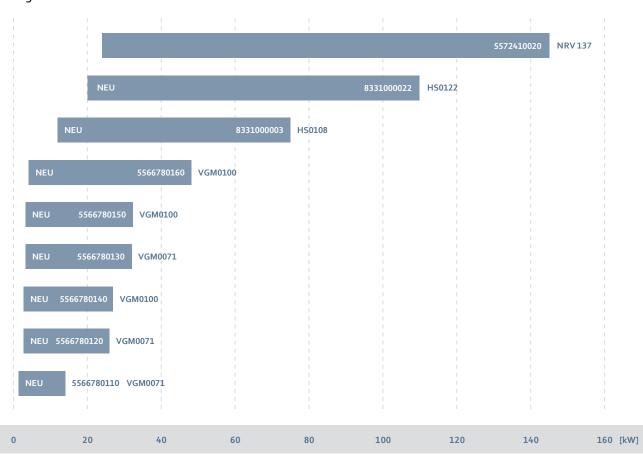
Die für die sichere Versorgung mit Gas notwendige Komponente ist besonders kompakt gebaut

+ Brennersteuerung:

Die elektronische Steuerung wird genau auf das System abgestimmt. Per Software können Signale aus der Brennersteuerung im Laborbetrieb ausgewertet werden.


Unsere Systemlösungen auf einen Blick

Eine perfekte Abstimmung aller Komponenten ist in der Heiztechnik essentiell, um optimale Leistung und Effizienz zu erzielen. Deshalb bieten wir Ihnen komplette Heizsysteme inklusive Gebläse, Venturi, Gasventil und Brennersteuerung aus einer Hand.

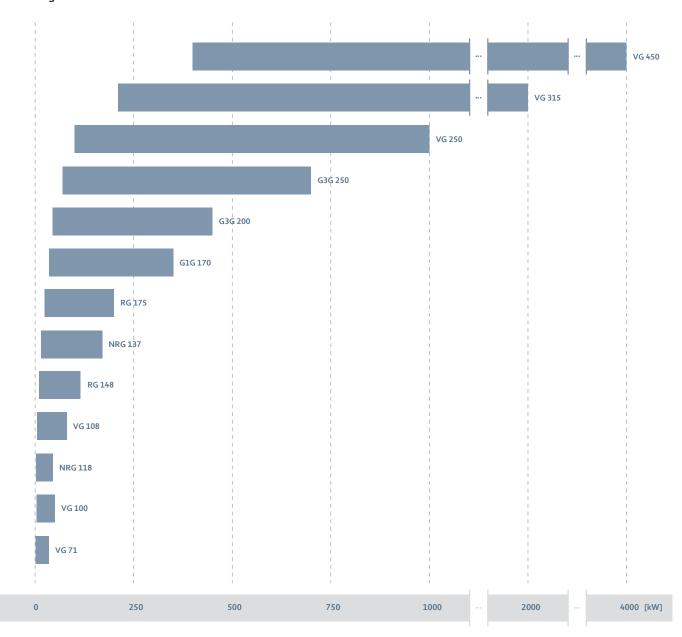

Ein wesentlicher Vorteil unserer Gas-Luft-Verbundsysteme ist das optimale Mischungsverhältnis bei gleichzeitig hohen Modulationsbereichen. Um diese hohe Effizienz zu erreichen, bieten wir verschiedene Venturis, z.B. High-efficiency Venturi oder Multiventuri, je nach Heizleistungsbereich an.

Darüber hinaus bieten Ihnen die Lösungen mit unseren Venturis vielfältige Möglichkeiten für die Anordnung unserer Systeme in Ihren Geräten. Sie haben so den Vorteil einer möglichst flexiblen und platzsparenden Integration.

Unsere Systeme liefern wir als komplett getestete und abgestimmte Einheiten mit optimierten Schnittstellen, um Ihren Aufwand zu minimieren.

Heizleistung in kW

 $Heat \ output \ range \ depending \ on \ type \ of \ gas \ concerned \ and \ system \ conditions. We itere \ System l\"osungen \ auf \ Anfrage \ (s.\ Seite \ 17).$


Systemlösungen

Heizleistungsbereic	Systemlösung	Gasgebläse	Venturi	Ventil	Brennersteuerung	Materialnummer
[kW]						
1.4-14	VGM0071	RadiMix VG 71	High-effiency Venturi	E01	CleanEco	5566780110
3 – 23	HS0118	NRG 118	Multiventuri	E01	CleanEco	8331000007
2.8 – 26	VGM0071	RadiMix VG 71	High-effiency Venturi	E01	CleanEco	5566780120
2.8 – 27	VGM0100	RadiMix VG 100	High-effiency Venturi	E01	CleanEco	5566780140
5 – 28	HS0118	NRG 118	Multiventuri	E01	CleanEco	8331000008
3.3 – 32	VGM0071	RadiMix VG 71	High-effiency Venturi	E01	CleanEco	5566780130
3.3 – 32	VGM0100	RadiMix VG 100	High-effiency Venturi	E01	CleanEco	5566780150
7 – 42	HS0118	NRG 118	Multiventuri	E01	CleanEco	8331000009
4.2 – 48	VGM0100	RadiMix VG 100	High-effiency Venturi	E01	CleanEco	5566780160
12 – 75	HS0108	RadiMix VG 108	Multiventuri	D01	CleanEco	8331000003
20-110	HS0122	RadiMix VG 122	Multiventuri	D01	CleanEco	8331000022
24-145	NRV 137	NRG 137	Multiventuri	D01	CleanEco	5572410020

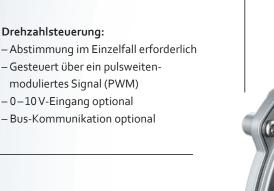
Moderne gasbetriebene, modulierende Brennwertgeräte müssen bei allen Betriebszuständen und äußeren Bedingungen mit der optimalen Menge und Zusammensetzung von Luft und Brennstoff versorgt werden. Hierfür sind regelbare Gebläse mit steiler Druck-Volumenstrom-Kennlinie und hohem Druckaufbau erforderlich. ebm-papst hat die Entwicklung dafür geeigneter EC-Gebläse entscheidend geprägt und bietet heute das umfangreichste Programm

für diesen Anwendungsbereich. Die technischen Angaben in diesem Katalog beziehen sich auf eine bestimmungsgemäße Anwendung in Gasbrennwertgeräten mit Aufstellung im Innenbereich. Die besonderen Eigenschaften dieser Gebläse können nach Absprache auch für viele andere Anwendungen genutzt werden. Beispiele hierfür sind gasbetriebene Gargeräte in der Systemgastronomie oder auch gasbetriebene Fritteusen für den kommerziellen Einsatz.

Heizleistung in kW

Heizleistung abhängig von der jeweiligen Gasart und den Systembedingungen.

Antrieb:


- Bürstenlose Gleichstrom-(EC-)Motoren mit integrierter Elektronik
- Schwingungsentkoppelte Montage zur Minimierung von Körperschall
- Anpassung der Motorleistung im Einzelfall

Gehäuse:

- Aus Aluminium-Druckguss (bzw. Aluminium-Druckguss und Stahlblech)
- Erforderliche Dichtheit durch spezielle Abdichtung der Gehäusehälften und der Antriebswellendurchführung
- Ausblasflansch vielfältig anpassbar

Ventilatorrad:

- Für Gebläsetypen VG 71, 100 und 108, NRG und RG aus gasbeständigem Kunststoff: dynamisch feingewuchtet
- Für die Modelle G1G 170, G3G 200, G3G 250, VG 250, VG 315 und VG 450 aus Aluminiumblech

- Wartungsfreie, beidseitig abgedeckte Kugellager für Langlebigkeit und Laufruhe

Kommutierungselektronik:

und -Immissionen

- Gesteuert über ein pulsweiten-

moduliertes Signal (PWM)

-0-10 V-Eingang optional - Bus-Kommunikation optional

Drehzahlsteuerung:

- In die Gebläseeinheit integriert und optimal auf den Motor abgestimmt

- Integrierte Blockadeabschaltung und

- Verschiedene Standardschnittstellen

Überlastungsschutz gemäß EN 60335

- Optimiert hinsichtlich EMV-Emissionen

verfügbar für die jeweilige Brennersteuerung

-Verwendung von speziell für die Anwendung ausgewählten Schmierfetten

Schutzart DIN EN 60529:2014:

Schutzart IP00, mit Abdeckhaube, als Einbaukomponente

Die anpassbare Rotation der Motorschutzkappe ermöglicht eine gute Zugänglichkeit

der Stecker und einen Schutz vor Tropfwasser

- Mit waagerechter Welle oder bei senkrechter Welle mit Motorlage oben
- Bei schwingungsgedämpfter Motormontage wird das Motorgewicht durch ein elastisches Element zusätzlich abgestützt

Drehzahlausgabe:

– Mit Hall-IC-Signalausgang, bei Motoren für Netzspannungsbetrieb galvanisch entkoppelt

Motorschutzkappe:

in der Anwendung.

Luftleistung, empfohlene Arbeitsbereiche & Modulation der Heizleistung

Gasgebläse

Luftleistungskennlinie:

Luftleistungskennlinien werden nach der DIN ISO 5801, Einbauart A bzw. C, auf einem Kammerprüstand mit druckseitigem Anschluss ermittelt.

Sie zeigen den Druckaufbau p_{fs} als Funktion des Volumenstroms q_v und gelten für eine Luftdichte von $\rho = 1,14 \text{ kg/m}^3 +/- 3,5\%$.

Empfohlener Arbeitsbereich:

Unsere Gebläse werden für den Betrieb im empfohlenen Arbeitsbereich entwickelt, welcher in untenstehender Kennlinie grau hinterlegt ist.

In diesem Bereich profitieren Sie von einem maximalen Gesamtwirkungsgrad des Gebläses und optimierter Akustik. Die Lebensdauererprobung erfolgt in diesem Bereich. Der empfohlene Arbeitsbereich erleichtert Ihnen eine maßgeschneiderte Auswahl des passenden Gebläses für Ihre Anwendung.

1500 1000 500 Ċ_R/q_v) 80 m³/h

Der Arbeitspunkt des Gebläses bewegt sich bei variabler

quadratische Kennlinie ergibt sich aus dem Druckverlust im System (Venturi, Ansaug- und Abgasrohr, Wärmetauscher,

Drehzahl entlang der Anlagenkennlinie. Die meist

Brenner) bei einem gegebenen Volumenstrom.

Außerhalb des grau hinterlegten Bereichs wandeln Elektronik, Motor und luftführende Teile des Gebläses nur einen reduzierten Teil der elektrischen Eingangsleistung in nutzbare Luftleistung um. Motor und Elektronik wurden optimal ausgelegt, um strenge Energierichtlinien (ErP2015) zu erfüllen. Daher ist es wichtig, das Gebläse im empfohlenen Arbeitsbereich zu betreiben, um einen maximalen Wirkungsgrad und minimale Geräuschemissionen zu erreichen.

Erklärungen:

q_V : Volumenstrom [m³/h]

Q_R: Heizleistung in [kW]

P_w: Elektrische Aufnahmeleistung in [W]

Wirkungsgrad und Verluste der Gebläse:

p_{fs}: Druckaufbau in [Pa]

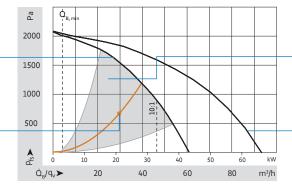
Anlagenkennlinie:

Systemlösung (Gasgebläse & Venturi)

+

Luftleistungskennlinie:

(des Systems, bestehend aus Venturi und Gasgebläse)


Die Luftleistungskennlinie gibt den Druckaufbau p_{fs} des Systems (Venturi und Gasgebläse) an. Sie wird nach DIN ISO 5801, Installationskategorie A, gemessen. Sie zeigt den Druckaufbau p_{fs} als Funktion des Volumenstroms q_V und gilt für eine Luftdichte von $\rho=1,14$ kg/m³ +/- 3,5%.

Empfohlener Arbeitsbereich: (des Systems, bestehend aus Venturi und Gasgebläse)

+

Unsere Systeme, die aus dem High-efficiency Venturi und einem Gasgebläse bestehen, sind für die Leistung in einem bestimmten Betriebsbereich optimiert.

In diesem Bereich (grau unterlegt) profitieren Sie von der maximalen Gesamteffizienz des Systems und einem breiten Modulationsbereich, abhängig von den zusätzlichen Druckverlusten Ihrer Anwendung (Ansaug, Brenner, Wärmetauscher, Abgasrohr).

Der Betriebspunkt des Systems (Venturi und Gasgebläse) bewegt sich entlang der typischerweise quadratischen Systemkennlinie. Unter der Annahme einer bekannten Gasart, z. B. G20, wird die minimale Heizleistung $\dot{\Omega}_{B,min}$ für ein System nur durch den Venturi-Düsendurchmesser bestimmt. Bei einem Mindestventuridruck von 40 Pa für ein typisches mechanisch-pneumatisches Gasventil wird $\dot{\Omega}_{B,min}$ auf Seite 21 angegeben.

Die maximale Heizleistung ist eine Funktion der maximalen aerodynamischen Leistung des Gebläses und der verbleibenden Druckverluste in der Anwendung. In diesem Beispiel betragen die verbleibenden Druckverluste in der Anwendung 955 Pa bei 33 kW Heizleistung. Unsere Systeme aus Venturi und Gasgebläse bieten einen hohen Modulationsbereich der Heizleistung bei hoher Effizienz.

Die Luftleistungskennlinie des Gebläses zeigt einen höheren Druckaufbau $p_{\rm fs}$ an, da die Druckverluste im Venturi nahezu quadratisch mit dem Volumenstrom $q_{\rm v}$ steigen. Das Gebläse ansich arbeitet auch dann noch optimal, wenn das Venturi installiert ist und das System im empfohlenen Betriebsbereich betrieben wird.

+

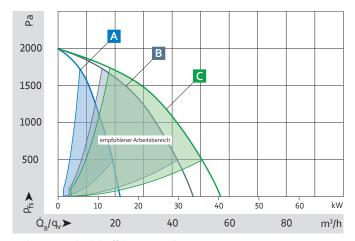
Betriebskurve der Anwendung: $(\dot{Q}_{min}$ and modulation)

Luftleistungskennlinie: (Gasgebläse)

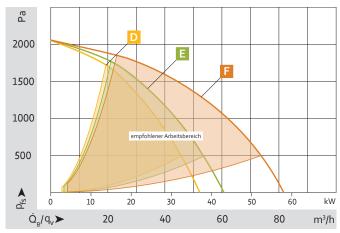
High-efficiency Venturi Gas-Luft-Mischeinrichtung

Seite 21	Mögliche Einbaulagen
ab Seite 18	Luftleistung und empfohlene Arbeitsbereiche
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mehr unter	www.ebmpapst.com

Heizleistungsbereich¹


■ Bis 53 kW

Material/Oberfläche


■ Kunststoff

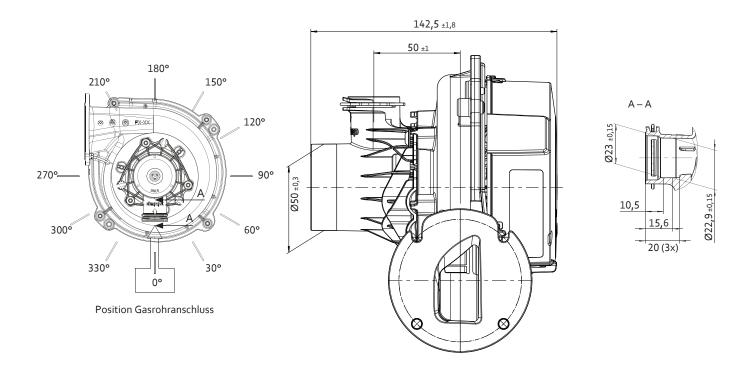
Mechanische Daten

- Materialzulassung: UL und VDE
- Kombinierbar mit RadiMix VG 71 und RadiMix VG 100
- In Abhängigkeit der Abstimmung und der Systemdruckverluste sind Modulationen bis 1:10 möglich

RadiMix VG 100 mit High-efficiency Venturi

Messbedingungen

Messbedningungen Luftleistung gemessen nach ISO 5801, Installationskategorie A. Die Angaben gelten nur unter den angegebenen Messbedingungen ($\rho = 1,14$ kg/m³ +/- 3,5 %) und können sich durch Einbaubedingungen verändern. Heizleistung $\hat{\Omega}_B$ für Gasart G20 bei Verbrennungsluftverhältnis λ =1,3.


ca.-Angabe; Heizleistung abhängig von der jeweiligen Gasart und den Systembedingungen.

Kennlinie	Тур	Materialnummer	Durchmesser der Venturidüse	Minimale Heizleistung Q _{B, min}	Heizleistung bei x Pa Druckverlust in der Anwendung	Druckverlust in der Anwendung	Masse	
			mm	kW	kW	Pa	kg	
Nennspa	annung 220/240 V AC	, 50/60 Hz						
	RadiMix VG 71 mit Hi g	gh-efficiency Ventu	ri					
Α	VGM0071MSGBS	5566780110	10	1,4	14	500	1,0	
В	VGM0071MSGBS	5566780120	14	2,8	28	750	1,0	
C	VGM0071MSGBS	5566780130	15,5	3,3	33	825	1,0	
	RadiMix VG 100 mit H	igh-efficiency Vent	uri					
D	VGM0100MSGBS	5566780140	14	2,8	28	945	1,0	
Ε	VGM0100MSGBS	5566780150	15,5	3,3	33	955	1,0	
F	VGM0100MSGBS	5566780160	18,5	4,2	42	1170	1,0	

Änderungen vorbehalten. Typangaben als System bestehend aus Lüfter und montiertem Venturi mit Gasrohranschlussposition 0°. Weitere Ausführungen auf Anfrage. Nur in Kombination mit einem ebm-papst Gasventil erhältlich. Heizleistung abhängig von der jeweiligen Gasart und den Systembedingungen.

F Technische Zeichnung

Maßangaben in mm

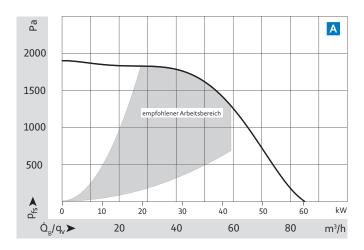
RadiMix VG 71

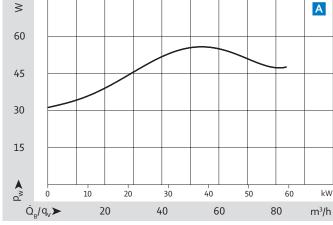
ab Seite 17	Mögliche Einbaulagen und Systemlösungen
ab Seite 18	Luftleistung und empfohlene Arbeitsbereiche
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mehr unter	www.ehmpanst.com

Heizleistungsbereich1

■ Bis 41 kW

Material/Oberfläche


- Gehäuse: Aluminium-Druckguss/Stahlblech
- Lüfterrad: Kunststoff
- Motorschutzkappe: Kunststoff

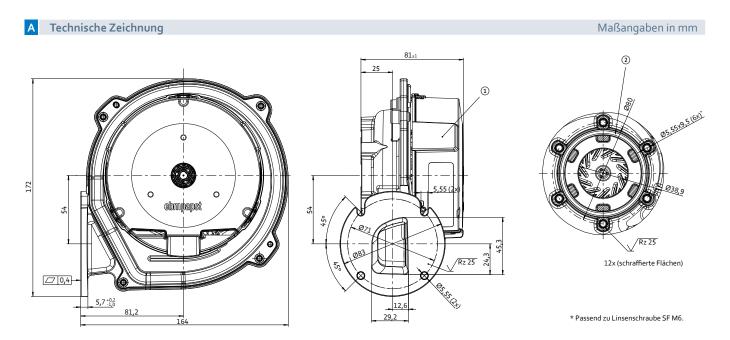

Mechanische Daten

- Schutzart: IP00, mit Abdeckhaube, als Einbaukomponente
- Einbaulage: mit waagerechter Welle oder bei senkrechter Welle mit Motorlage oben
- Lagerung: Kugellager
- High-efficiency Venturi verfügbar

Elektrische Daten

■ Konstruiert für Schutzklasse I

Messbedingungen


Luftleistung gemessen nach ISO 5801, Installationskategorie C. Die Angaben gelten nur unter den angegebenen Messbedingungen (p = 1,14 kg/m³ +/- 3,5 %) und können sich durch Einbaubedingungen verändern. Heizleistung \dot{Q}_a für Gasart G20 bei Verbrennungsluftverhältnis λ =1,3.

¹ Heizleistungsbereich

ca.-Angabe; Heizleistung abhängig von der jeweiligen Gasart und den Systembedingungen.

		Masse	Zul. Förder tempe	Zul. Motori tempe	Max. Aufnak	Max. Drehzahl	Material	Тур	Kennlinie
min ⁻¹ W °C °C kg									
Nennspannung 220/240 V AC, 50/60 Hz									
A VGR0071MSGBS 8331000001 14000 65 0 bis 60 -15 bis 60 0,9		0,9	-15 bis 60	0 bis 60	65	14000	8331000001	VGR0071MSGBS	Α

 $\ddot{\text{A}} \text{nderungen vorbehalten. Temperaturang aben abhängig vom Zeit-Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage.}$

- (1) kein Handling an der Motorschutzkappe zulässig
- 2 Nut passend fuer Runddichtring 63x3

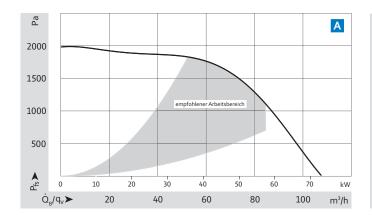
RadiMix VG 100

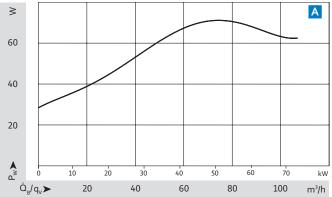
ab Seite 17	Mögliche Einbaulagen und Systemlösungen
ab Seite 18	Luftleistung und empfohlene Arbeitsbereiche
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mehr unter	www.ebmpapst.com

Heizleistungsbereich1

■ Bis 57 kW

Material/Oberfläche


- Gehäuse: Aluminium-Druckguss/Stahlblech
- Lüfterrad: Kunststoff
- Motorschutzkappe: Kunststoff


Mechanische Daten

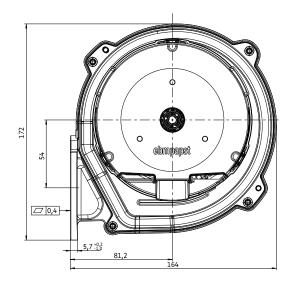
- Schutzart: IP00, mit Abdeckhaube, als Einbaukomponente
- Einbaulage: mit waagerechter Welle oder bei senkrechter Welle mit Motorlage oben
- Lagerung: Kugellager
- High-efficiency Venturi verfügbar

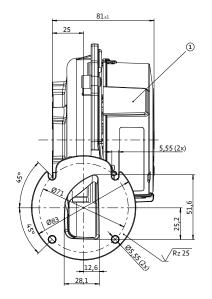
Elektrische Daten

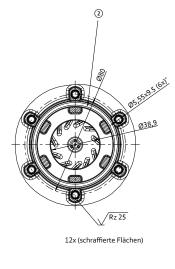
■ Konstruiert für Schutzklasse I

Messbedingungen

Luftleistung gemessen nach ISO 5801, Installationskategorie C. Die Angaben gelten nur unter den angegebenen Messbedingungen ($\rho=1,14~kg/m^3+f\cdot 3,5~\%$) und können sich durch Einbaubedingungen verändern. Heitzleistung Q_g für Gasart G20 bei Verbrennungsluftverhältnis $\lambda=1,3$.


¹ Heizleistungsbereich


 $ca.-Angabe; Heizleistung\ abhängig\ von\ der\ jeweiligen\ Gasart\ und\ den\ Systembedingungen.$


min ⁻¹ W °C °C kg Nennspannung 220/240 V AC, 50/60 Hz	Kennlinie	Тур	Material nummer	Max. Drehzahl n	Max. Aufnahmeleistung P _{ed}	Zul. Motorumgebungs- temperaturbereich	Zul. Fördermittel temperaturbereich	Masse		
Nennspannung 220/240 V AC, 50/60 Hz	min⁻¹ W °C °C kg									
	Nennspannung 220/240 V AC, 50/60 Hz									
A VGR0100MSGBS 8331000002 10000 90 0 bis 60 -15 bis 60 0,9	Α	VGR0100MSGBS	8331000002	10000	90	0 bis 60	-15 bis 60	0,9		

Änderungen vorbehalten. Temperaturangaben abhängig vom Zeit-Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage.

A Technische Zeichnung Maßanagben in mm

* Passend zu Linsenschraube SF M6.

- (1) kein Handling an der Motorschutzkappe zulässig
- 2 Nut passend fuer Runddichtring 63x3

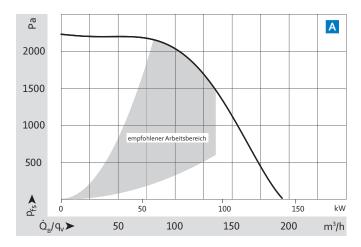
RadiMix VG 108

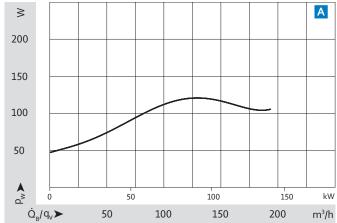
ab Seite 17	Mögliche Einbaulagen und Systemlösungen
ab Seite 18	Luftleistung und empfohlene Arbeitsbereiche
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mehr unter	www.ehmpapst.com

Heizleistungsbereich¹

■ Bis 93 kW

Material/Oberfläche


- Gehäuse: Aluminiumguss/Stahlblech
- Lüfterrad: Kunststoff
- Motorschutzkappe: Kunststoff


Mechanische Daten

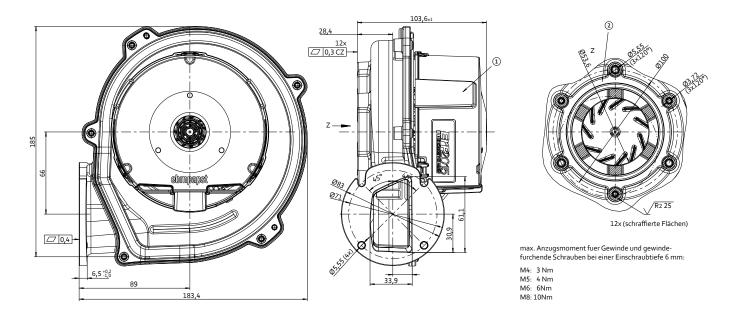
- Schutzart: IP00, mit Abdeckhaube, als Einbaukomponente
- Einbaulage: mit waagerechter Welle oder bei senkrechter Welle mit Motorlage oben
- Lagerung: Kugellager
- Multiventuri verfügbar auf Anfrage

Elektrische Daten

■ Konstruiert für Schutzklasse I

Messbedingungen

Luftleistung gemessen nach ISO 5801, Installationskategorie C. Die Angaben gelten nur unter den angegebenen Messbedingungen (p = 1,14 kg/m³ +/- 3,5 %) und können sich durch Einbaubedingungen verändern. Heizleistung Q_6 für Gasart G20 bei Verbrennungsluftverhältnis λ =1,3.


¹ Heizleistungsbereich

ca.-Angabe; Heizleistung abhängig von der jeweiligen Gasart und den Systembedingungen.

Materialn Max. Drehzahl Max. Aufnahm temperat Fördermi temperat								
min ⁻¹ W °C °C kg								
Nennspannung 220/240 V AC, 50/60 Hz								
A VGR0108MSGDS 5566780260 10000 135 0 bis 60 -15 bis 60 1,2								

 $\label{thm:problem} \ddot{\text{A}} \text{nderungen vorbehalten. Temperaturangaben abhängig vom Zeit-Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage.}$

A Technische Zeichnung Maßangaben in mm

- (1) kein Handling an der Motorschutzkappe zulässig
- 2 Nut passend fuer Runddichtring 70x3

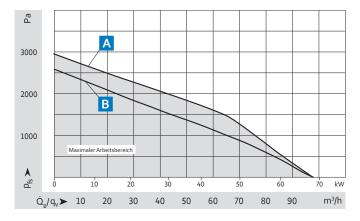
NRG 118

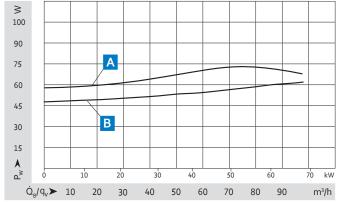
ab Seite 17	Mögliche Einbaulagen und Systemlösungen
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mehr unter	www.ebmpapst.com

Heizleistungsbereich1

■ Bis 42 kW

Material/Oberfläche


- Gehäuse: Aluminium
- Lüfterrad: Kunststoff
- Motorschutzkappe: Kunststoff


Mechanische Daten

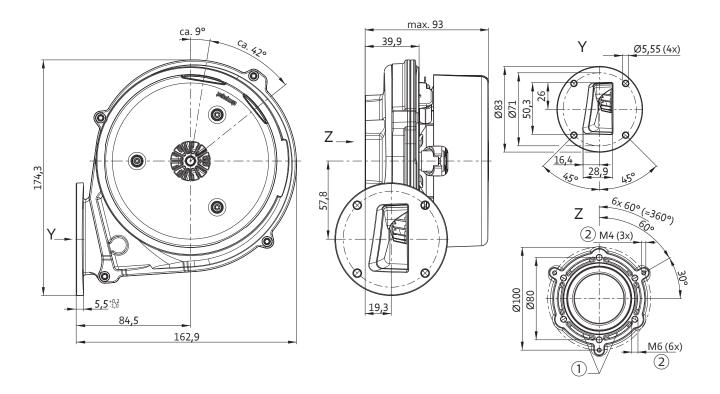
- Schutzart: IP00, mit Abdeckhaube, als Einbaukomponente
- Einbaulage: mit waagerechter Welle oder bei senkrechter Welle mit Motorlage oben
- Lagerung: Kugellager
- Multiventuri verfügbar

Elektrische Daten

■ Konstruiert für Schutzklasse I

Messbedingungen

Luftleistung gemessen nach ISO 5801, Installationskategorie C. Die Angaben gelten nur unter den angegebenen Messbedingungen ($\rho=1,14~kg/m^3+f\cdot 3,5~\%$) und können sich durch Einbaubedingungen verändern. Heitzleistung Q_g für Gasart G20 bei Verbrennungsluftverhältnis $\lambda=1,3$.


¹ Heizleistungsbereich

 $ca.-Angabe; Heizleistung\ abhängig\ von\ der\ jeweiligen\ Gasart\ und\ den\ Systembedingungen.$

Kennlinie	Тур	Materialnummer	Max. Drehzahl n	Max. Aufnahmeleistung P _{ed}	Zul. Motorumgebungs- temperaturbereich	Zul. Fördermittel- temperaturbereich	Masse		
			min⁻¹	W	°C	°C	kg		
Nennspa	Nennspannung 230 V AC, 50/60 Hz								
Α	VGR0118NSHCS	5566731160	10000	70	0 bis 60	-15 bis 60	1,0		
Nennspannung 115 V AC, 60 Hz									
В	VGR0118NSHCS	5566730030	10000	61	0 bis 60	-15 bis 60	1,0		

 $\label{thm:continuity} \textbf{A} \textbf{n} derungen vorbehalten. \textbf{Temperaturangaben abhängig vom Zeit-Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage. Optional mit stärkerem Motor erhältlich. \\$

A Technische Zeichnung Maßangaben in mm

- ① Nut passend für Runddichtring 63 x 3
- 2 6,5 tief

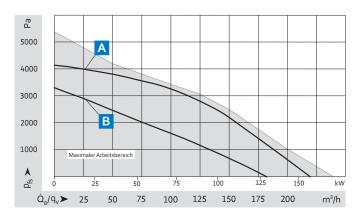
RG 148

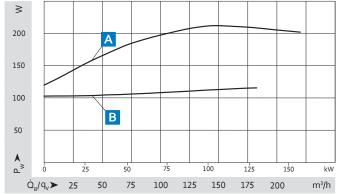
ab Seite 17	Mögliche Einbaulagen und Systemlösungen
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mehr unter	www.ebmpapst.com

Heizleistungsbereich1

■ Bis 110 kW

Material/Oberfläche


- Gehäuse: Aluminium
- Lüfterrad: Kunststoff
- Motorschutzkappe: Kunststoff


Mechanische Daten

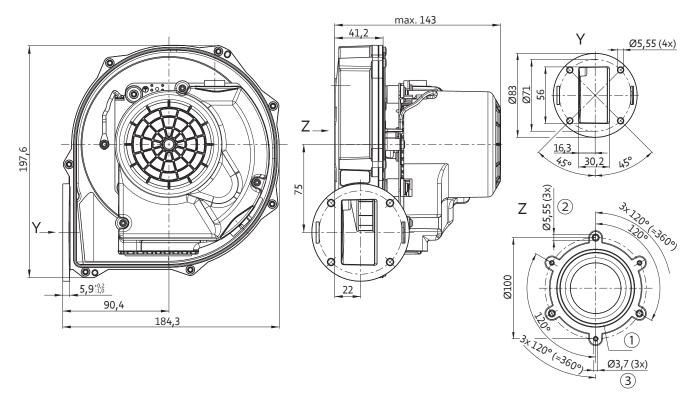
- Schutzart: IP00, mit Abdeckhaube, als Einbaukomponente
- Einbaulage: mit waagerechter Welle oder bei senkrechter Welle mit Motorlage oben
- Lagerung: Kugellager
- Multiventuri verfügbar

Elektrische Daten

■ Konstruiert für Schutzklasse I

Messbedingungen

Luftleistung gemessen nach ISO 5801, Installationskategorie C. Die Angaben gelten nur unter den angegebenen Messbedingungen ($\rho=1,14~kg/m^3+f\cdot 3,5~\%$) und können sich durch Einbaubedingungen verändern. Heitzleistung Q_g für Gasart G20 bei Verbrennungsluftverhältnis $\lambda=1,3$.


¹ Heizleistungsbereich

ca.-Angabe; Heizleistung abhängig von der jeweiligen Gasart und den Systembedingungen.

Kennlinie	Тур	Materialnummer	Max. Drehzahl n	Max. Aufnahmeleistung P _{ed}	Zul. Motorumgebungs- temperaturbereich	Zul. Fördermittel- temperaturbereich	Masse	
			min-1	W	°C	°C	kg	
Nennspannung 230 V AC, 50/60 Hz								
Α	VGR0148XSHGS	5566725230	9000	200	0 bis 60	-15 bis 60	2,1	
Nennsp	Nennspannung 120 V AC, 60 Hz							
В	VGR0148XSHGS	auf Anfrage	8200	130	0 bis 60	-15 bis 60	2,0	

 $\label{thm:continuity} \textbf{A} \textbf{n} derungen vorbehalten. \textbf{Temperaturangaben abhängig vom Zeit-Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage. Optional mit stärkerem Motor erhältlich. \\$

A Technische Zeichnung Maßangaben in mm

- 1 Nut passend für Runddichtring 70 x 3
- 2 10,5 tief
- 3 9,5 tief

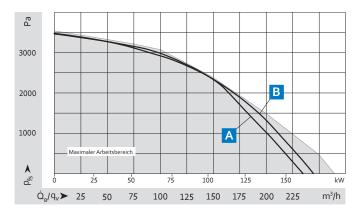
NRG 137

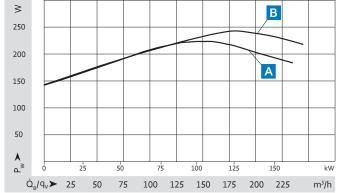
ab Seite 17	Mögliche Einbaulagen und Systemlösungen
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mohruptor	www.chmparst.com

Heizleistungsbereich1

■ Bis 150 kW

Material/Oberfläche


- Gehäuse: Aluminium
- Lüfterrad: Kunststoff
- Motorschutzkappe: Kunststoff


Mechanische Daten

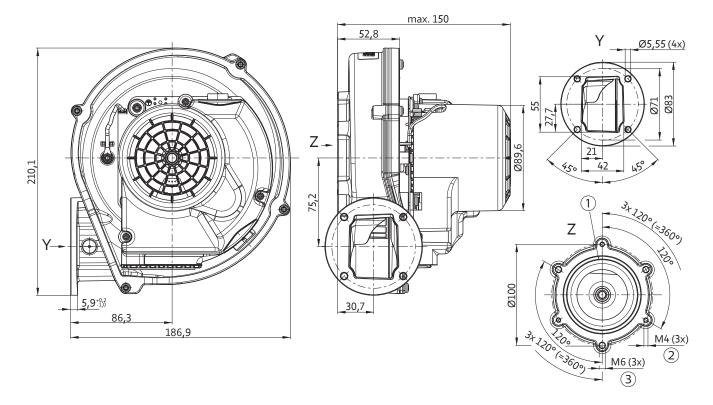
- Schutzart: IP00, mit Abdeckhaube, als Einbaukomponente
- Einbaulage: mit waagerechter Welle oder bei senkrechter Welle mit Motorlage oben
- Lagerung: Kugellager
- Multiventuri verfügbar

Elektrische Daten

Konstruiert f
 ür Schutzklasse I

Messbedingungen

Luftleistung gemessen nach ISO 5801, Installationskategorie C. Die Angaben gelten nur unter den angegebenen Messbedingungen ($\rho=1,14~kg/m^3+f\cdot 3,5~\%$) und können sich durch Einbaubedingungen verändern. Heitzleistung Q_g für Gasart G20 bei Verbrennungsluftverhältnis $\lambda=1,3$.


¹ Heizleistungsbereich

 $ca.-Angabe; Heizleistung\ abhängig\ von\ der\ jeweiligen\ Gasart\ und\ den\ Systembedingungen.$

Kennlinie	Тур	Materialnummer	Max. Drehzahl n	Max. Aufnahmeleistung P _{ed}	Zul. Motorumgebungs- temperaturbereich	Zul. Fördermittel temperaturbereich	Masse	
			min-1	W	°C	°C	kg	
Nennsp	Nennspannung 230 V AC, 50/60 Hz							
Α	VGR0137NSHGS	5566733110	8500	220	0 bis 60	-15 bis 60	1,9	
Nennspannung 120 V AC, 60 Hz								
В	VGR0137NSHGS	5566733040	8500	250	0 bis 60	-15 bis 60	2,4	

 $\label{thm:continuity} \textbf{A} \textbf{n} derungen vorbehalten. \textbf{Temperaturangaben abhängig vom Zeit-Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage. Optional mit stärkerem Motor erhältlich. \\$

A Technische Zeichnung Maßangaben in mm

- \bigcirc Nut passend für Runddichtring 70 x 3
- 2 6,5 tief
- 3 7,5 tief

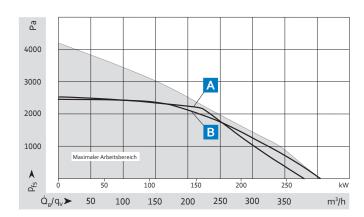
RG 175

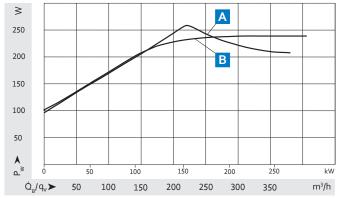
ab Seite 17	Mögliche Einbaulagen
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mehr unter	www.ehmpanst.com

Heizleistungsbereich1

■ Bis 200 kW

Material/Oberfläche


- Gehäuse: Aluminium
- Lüfterrad: Kunststoff
- Motorschutzkappe: Kunststoff

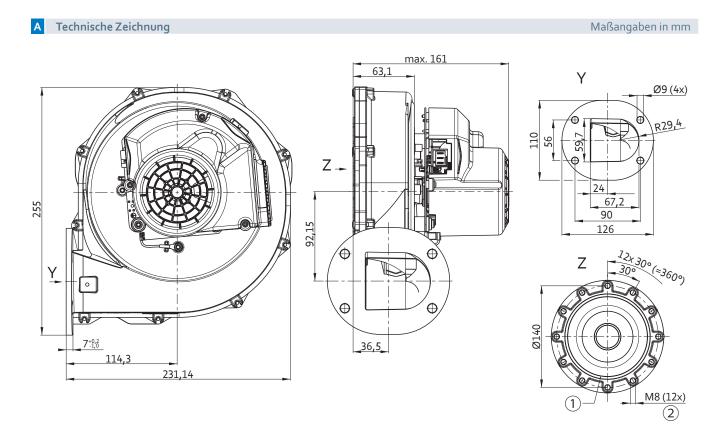

Mechanische Daten

- Schutzart: IP00, mit Abdeckhaube, als Einbaukomponente
- Einbaulage: mit waagerechter Welle oder bei senkrechter Welle mit Motorlage oben
- Lagerung: Kugellager

Elektrische Daten

Konstruiert f
 ür Schutzklasse I

Messbedingungen


Luftleistung gemessen nach ISO 5801, Installationskategorie C. Die Angaben gelten nur unter den angegebenen Messbedingungen ($\rho=1,14~kg/m^2+l^2~3,5\%$) und können sich durch Einbaubedingungen verändern. Heizleistung Q_g für Gasart G2O bei Verbrennungsluftverhältnis $\lambda=1,3$.

¹ Heizleistungsbereich

ca.-Angabe; Heizleistung abhängig von der jeweiligen Gasart und den Systembedingungen.

Kennlinie	Тур	Materialnummer	Max. Drehzahl n	Max. Aufnahmeleistung P _{ed}	Zul. Motorumgebungs- temperaturbereich	Zul. Fördermittel- temperaturbereich	Masse	
			min-1	W	°C	°C	kg	
Nennsp	Nennspannung 230 V AC, 50/60 Hz							
Α	VGR0175XSHGS	5566714090	6250	270	0 bis 60	-15 bis 60	2,9	
Nennspannung 120 V AC, 60 Hz								
В	VGR0175XSHGS	5566714002	6250	240	0 bis 60	-15 bis 60	2,8	

 $\label{thm:continuity} \textbf{A} \textbf{n} derungen vorbehalten. \textbf{Temperaturangaben abhängig vom Zeit-Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage. Optional mit stärkerem Motor erhältlich. \\$

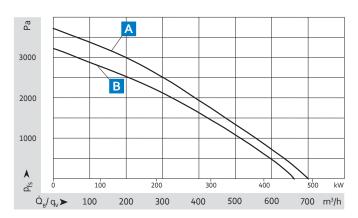
- \bigcirc Nut passend für Runddichtring 110 x 3,4
- 2 8,5 tief

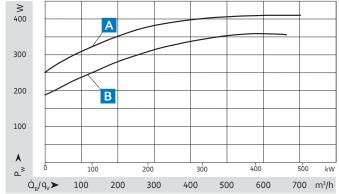
ab Seite 17	Mögliche Einbaulagen
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mehr unter	www.ebmpapst.com

Heizleistungsbereich¹

■ Bis 300 kW

Material/Oberfläche


- Gehäuse: Aluminium
- Lüfterrad: Aluminiumblech
- Motorschutzkappe: Kunststoff

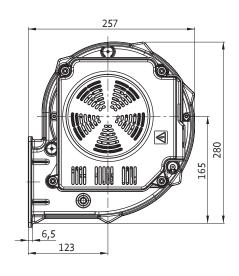

Mechanische Daten

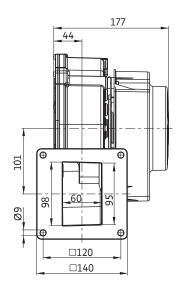
- Schutzart: IP20 mit Abdeckhaube
- Einbaulage: mit waagerechter Welle oder bei senkrechter Welle mit Motorlage oben
- Lagerung: Kugellager

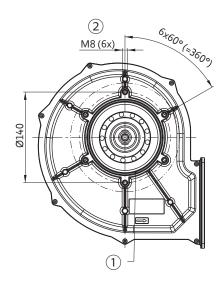
Elektrische Daten

Konstruiert f
 ür Schutzklasse I

Messbedingungen


Luftleistung gemessen nach ISO 5801, Installationskategorie C. Die Angaben gelten nur unter den angegebenen Messbedingungen ($\rho=1,14$ kg/m³ +/- 3,5 %) und können sich durch Einbaubedingungen verändern. Heizleistung \dot{Q}_B für Gasart G20 bei Verbrennungsluftverhältnis λ =1,3.


¹ Heizleistungsbereich ca.-Angabe; Heizleistung abhängig von der jeweiligen Gasart und den Systembedingungen.


Kennlinie	Typ Materialnummer		Max. Drehzahl n	Max. Aufnahmeleistung P _{ed}	Zul. Motorumgebungs- temperaturbereich	Zul. Fördermittel- temperaturbereich	Masse	
			min-1	W	°C	°C	kg	
Nennsp	annung 1~230 V AC,	50/60 Hz						
Α	VGR0170XSPGS	5560001182	7200	420	0 bis 55	-15 bis 55	5,0	
Nennspannung 1~115 V AC, 50/60 Hz								
В	<u></u>		7200	360	0 bis 55	-15 bis 55	5,0	

A Technische Zeichnung

Maßangaben in mm

- $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \end{tabular} \end{ta$
- 2 9,5 tief

EC-Radialventilator

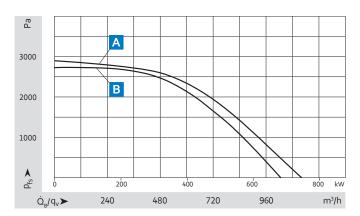
G3G 200

ab Seite 17	Mögliche Einbaulagen
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mehr unter	www.ebmpapst.com

Heizleistungsbereich¹

■ Bis 500 kW

Material/Oberfläche


- Gehäuse: Aluminium
- Lüfterrad: Aluminiumblech
- Motorschutzkappe: Kunststoff


Mechanische Daten

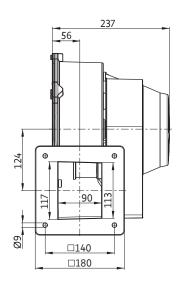
- Schutzart: IP20 mit Abdeckhaube
- Einbaulage: mit waagerechter Welle oder bei senkrechter Welle mit Motorlage oben
- Lagerung: Kugellager

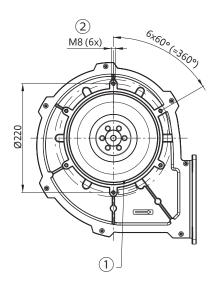
Elektrische Daten

Konstruiert f
 ür Schutzklasse I

Messbedingungen

Luftleistung gemessen nach ISO 5801, Installationskategorie C. Die Angaben gelten nur unter den angegebenen Messbedingungen ($\rho=1,14$ kg/m³+/- 3,5 %) und können sich durch Einbaubedingungen verändern. Heizleistung \dot{Q}_{a} für Gasart G20 bei Verbrennungsluftverhältnis $\lambda=1,3$.


¹ Heizleistungsbereich ca.-Angabe; Heizleistung abhängig von der jeweiligen Gasart und den Systembedingungen.


	Max. Aufnahmeleistung l Aufnahmeleistung l Zul. Fördermittel- temperaturbereich Masse
min ⁻¹ W °C °C kg	min ⁻¹ W °C °C kg
Nennspannung 1~230 V AC, 50/60 Hz	
A VGR0200XSPKS 5560003030 6100 890 0 bis 50 -15 bis 50 10	6100 890 0 bis 50 -15 bis 50 10
Nennspannung 1~115 V AC, 50/60 Hz	
B VGR0200XSPKS 5560003051 5700 800 0 bis 60 -15 bis 60 10	5700 800 0 bis 60 -15 bis 60 10

 $\label{thm:continuous} \begin{tabular}{ll} And erungen vor behalten. Temperaturang aben abhäng ig vom Zeit-Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage. Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage. Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage. Temperatur-Profil. Erweiterter Temperatur-Profil. Erweiter Temperatur-Profil. E$

A Technische Zeichnung Maßangaben in mm

- \bigcirc Nut passend für Runddichtring 180 x 3,5
- 2 12 tief

EC-Radialventilator

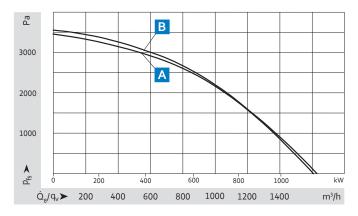
G3G 250

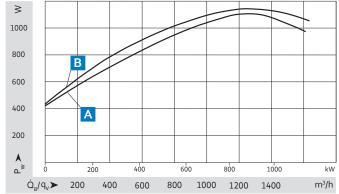
ab Seite 17	Mögliche Einbaulagen
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mehr unter	www.ebmpapst.com

Heizleistungsbereich1

■ Bis 800 kW

Material/Oberfläche


- Gehäuse: Aluminium
- Lüfterrad: Metall
- Motorschutzkappe: Kunststoff


Mechanische Daten

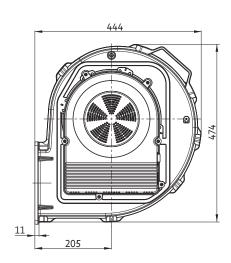
- Schutzart: IP20 mit Abdeckhaube
- Einbaulage: mit waagerechter Welle oder bei senkrechter Welle mit Motorlage oben
- Lagerung: Kugellager

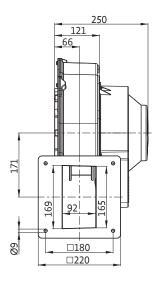
Elektrische Daten

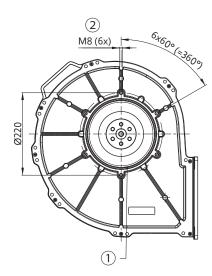
Konstruiert f
 ür Schutzklasse I

Messbedingungen

Luftleistung gemessen nach ISO 5801, Installationskategorie C. Die Angaben gelten nur unter den angegebenen Messbedingungen ($\rho=1,14~kg/m^3+f\cdot 3,5~\%$) und können sich durch Einbaubedingungen verändern. Heitzleistung Q_g für Gasart G20 bei Verbrennungsluftverhältnis $\lambda=1,3$.


¹ Heizleistungsbereich


 $ca.-Angabe; Heizleistung\ abhängig\ von\ der\ jeweiligen\ Gasart\ und\ den\ Systembedingungen.$


min ⁻¹ W °C °C kg Nennspannung 1~230 V AC, 50/60 Hz 4 VGR0250XSPKS 5560005021 5200 1150 0 bis 60 -15 bis 60 13 Nennspannung 1~115 V AC, 50/60 Hz 5200 1200 0 bis 60 -15 bis 60 13	Kennlinie	Typ Materialnummer		Max. Drehzahl n	Max. Aufnahmeleistung P _{ed}	Zul. Motorumgebungs- temperaturbereich	Zul. Fördermittel- temperaturbereich	Masse	
A VGR0250XSPKS 5560005021 5200 1150 0 bis 60 -15 bis 60 13 Nennspannung 1-115 V AC, 50/60 Hz				min-1	W	°C	°C	kg	
Nennspannung 1-115 V AC, 50/60 Hz	Nennsp	annung 1~230 V AC,	50/60 Hz						
_ · <u>_ · _ · _ · _ ·</u>	Α	VGR0250XSPKS	5560005021	5200	1150	0 bis 60	-15 bis 60	13	
B VGR0250XSPKS 5560005051 5200 1200 0 bis 60 -15 bis 60 13	Nennsp	annung 1~115 V AC,	50/60 Hz						
	В	B VGR0250XSPKS 5560005		5200	1200	0 bis 60	-15 bis 60	13	

A Technische Zeichnung

Maßangaben in mm

- \bigcirc Nut passend für Runddichtring 180 x 3,5
- 2 12 tief

EC-Radialventilator

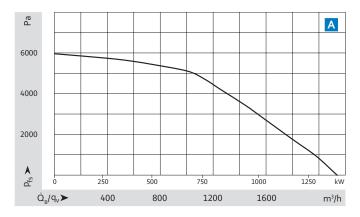
VG 250

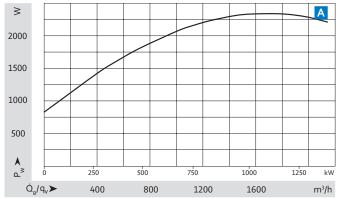
ab Seite 17	Mögliche Einbaulagen
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mehr unter	www.ebmpapst.com

Heizleistungsbereich¹

■ Bis 1100 kW

Material/Oberfläche


- Gehäuse: Aluminium
- Lüfterrad: Aluminiumblech
- Motorummantelung: Metall

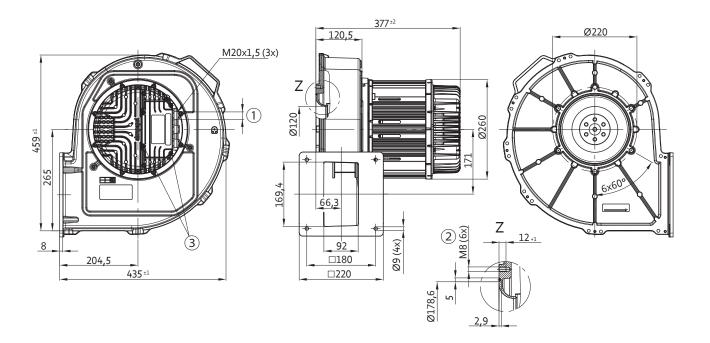

Mechanische Daten

- Schutzart: IP20 mit Abdeckhaube
- Einbaulage: mit waagerechter Welle oder bei senkrechter Welle mit Motorlage oben
- Lagerung: Kugellager

Elektrische Daten

Konstruiert f
 ür Schutzklasse I

Messbedingungen


Luftleistung gemessen nach ISO 5801, Installationskategorie C. Die Angaben gelten nur unter den angegebenen Messbedingungen ($\rho=1,14$ kg/m³+/- 3,5 %) und können sich durch Einbaubedingungen verändern. Heizleistung \dot{Q}_{a} für Gasart G20 bei Verbrennungsluftverhältnis $\lambda=1,3$.

¹ Heizleistungsbereich ca.-Angabe; Heizleistung abhängig von der jeweiligen Gasart und den Systembedingungen.

Kennlinie	Тур	Material nurmer	Max. Drehzahl n	Max. Aufnahmeleistung P _{ed}	Zul. Motorumgebungs- temperaturbereich	Zul. Fördermittel: temperaturbereich	Masse				
			min-1	W	°C	°C	kg				
Nennspa	Nennspannung 3~380 – 480 V AC, 50/60 Hz										
Α	A VGR0250XTRHS 5560006010		6400	2500	0 bis 50	-15 bis 50	24				

 $\ddot{\text{A}} \text{nderungen vorbehalten. Temperaturang aben abhängig vom Zeit-Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage.}$

A Technische Zeichnung Maßangaben in mm

- \bigcirc Kabeldurchmesser min. 4 mm, max. 10 mm, Anzugsmoment 4 \pm 0,6 Nm
- \bigcirc Einschraubtiefe 10–12 mm, Anzugsmoment 20 ± 3 Nm
- (3) Anzugsmoment 3,5 ± 0,5 Nm

EC-Radialventilator

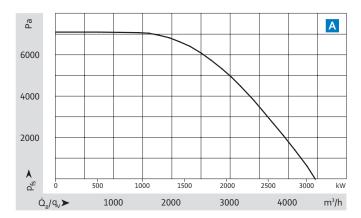
VG 315

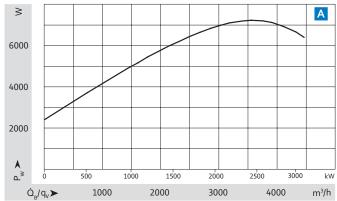
ab Seite 17	Mögliche Einbaulagen
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mehr unter	www.ebmpapst.com

Heizleistungsbereich¹

■ Bis 2000 kW

Material/Oberfläche


- Gehäuse: Aluminium
- Lüfterrad: Aluminiumblech
- Motorschutzkappe: Kunststoff

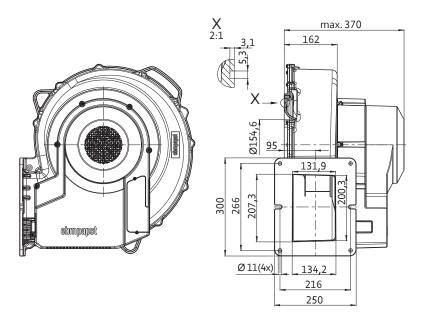

Mechanische Daten

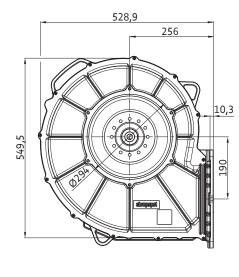
- Schutzart: IP20 mit Abdeckhaube
- Einbaulage: beliebig
- Lagerung: Kugellager

Elektrische Daten

■ Konstruiert für Schutzklasse I

Messbedingungen


Luftleistung gemessen nach ISO 5801, Installationskategorie C. Die Angaben gelten nur unter den angegebenen Messbedingungen ($\rho=1,14$ kg/m³+/- 3,5 %) und können sich durch Einbaubedingungen verändern. Heizleistung \dot{Q}_{a} für Gasart G20 bei Verbrennungsluftverhältnis $\lambda=1,3$.


¹ Heizleistungsbereich ca.-Angabe; Heizleistung abhängig von der jeweiligen Gasart und den Systembedingungen.

Kennlinie	Kennlinie Typ Materialnummer		Max. Drehzahl n	Max. Aufnahmeleistung P _{ed}	Zul. Motorumgebungs- temperaturbereich	Zul. Fördermittel - temperaturbereich	Masse		
			min-1	W	°C	°C	kg		
Nennsp	annung 3~380 – 480 \	/ AC, 50/60 Hz							
Α	A VGR0315XTTLS 5560007000 *		6000	8000	0 bis 60	-15 bis 60	36		
Nennspannung 3~200 – 240 V AC, 50/60 Hz									
VGR0315XTTLS 5560007030		6000	8000	0 bis 50	-15 bis 60	36			

 $\label{thm:continuous} \begin{tabular}{ll} And erungen vor behalten. Temperaturang aben abhängig vom Zeit-Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage. *Auch mit 0-10 V-Schnittstelle erhältlich. Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage. *Auch mit 0-10 V-Schnittstelle erhältlich. Temperatur-Profil. Erweiterter Temperatur-Profil. Erweiter Tempe$

A Technische Zeichnung Maßangaben in mm

EC-Radialventilator

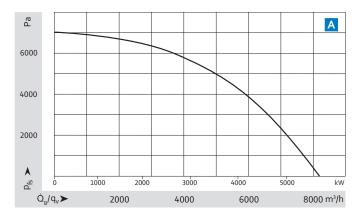
VG 450

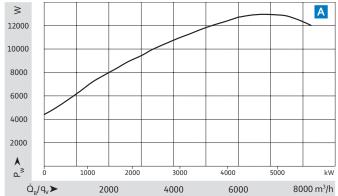
ab Seite 17	Mögliche Einbaulagen
ab Seite 48	Netzanschlussstecker X, Schnittstellenstecker W
ab Seite 50	Elektrische Schnittstelle
Mehr unter	www.ebmpapst.com

Heizleistungsbereich1

■ Bis 4000 kW

Material/Oberfläche


- Gehäuse: Aluminiumguss
- Lüfterrad: Aluminiumblech
- Motoschutzkappe: Aluminium-Druckguss
- Elektronikbox: Aluminium-Druckguss

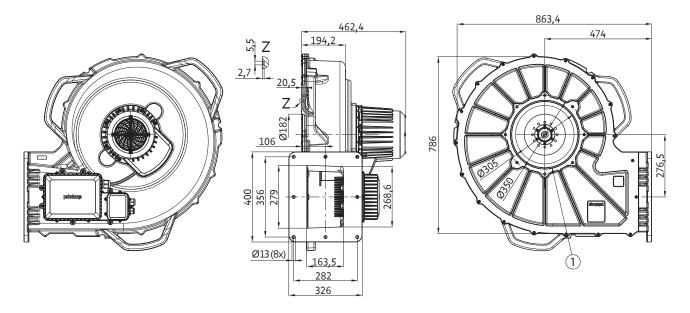

Mechanische Daten

- Schutzart Elektronik: IP54
- Schutzart Motor: IP20
- Einbaulage: beliebig
- Lagerung: Kugellager

Elektrische Daten

Konstruiert f
 ür Schutzklasse I

Messbedingungen


Luftleistung gemessen nach ISO 5801, Installationskategorie C. Die Angaben gelten nur unter den angegebenen Messbedingungen ($\rho=1,14~kg/m^3+f\cdot 3,5~\%$) und können sich durch Einbaubedingungen verändern. Heitzleistung Q_g für Gasart G20 bei Verbrennungsluftverhältnis $\lambda=1,3$.

¹ Heizleistungsbereich

 $ca.-Angabe; Heizleistung\ abhängig\ von\ der\ jeweiligen\ Gasart\ und\ den\ Systembedingungen.$

Kennlinie	Тур	Materialnummer	Max. Drehzahl n	Max. Aufnahmeleistung P _{ed}	Zul. Motorumgebungs- temperaturbereich	Zul. Fördermittel temperaturbereich	Masse	
			min-1	W	°C	°C	kg	
Nennspannung 3~380-480 V AC, 50/60 Hz								
Α	VGR0450XTTPS	auf Anfrage	4250	14000	0 bis 401)	-15 bis 50	85	

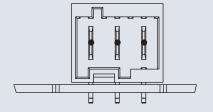
A Technische Zeichnung Maßangaben in mm

1 Dichtungsnut

¹⁾ Kurzzeitig 60 °C. Änderungen vorbehalten. Temperaturangaben abhängig vom Zeit-Temperatur-Profil. Erweiterter Temperaturbereich auf Anfrage.

Stecker

Cha		/G 71	/G 100	VG 108	NRG 118	RG 148	NRG 137	RG 175	G1G 170	G3G 200	G3G 250	VG 250	VG 315	VG 450
1	Netzanschlussstecker X	×	×	×	×	X	×	X						
2	Netzanschlussstecker X				X	X	X	X	Х	X	Х	itung	itung	itung
3	Schnittstellenstecker W	×	X	X								sanle	sanle	siehe Betriebsanleitung
4	Schnittstellenstecker W				X	X	X	X	X			Betriebsanleitung	siehe Betriebsanleitung	riebs
5	Schnittstellenstecker W					^		,	^	X	X	siehe Bet	le Bei	e Bei
6	Schnittstellenstecker W												sieh	sieh
	Schnittstelle 04600451	03	03	03	04	04	04	04	38	39	39	64	61	63


 $Stecker\ beziehen\ sich\ auf\ 230\text{-}V\text{-}Varianten.\ Weitere\ Stecker\text{-}\ und\ Schnittstellenvarianten\ auf\ Anfrage.$

1 Netzanschlussstecker X

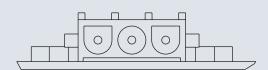
3-polige Messerleiste in der Kodierungsvariante 0A nach RAST 5 in 90° abgewinkelter / liegender Ausführung mit nach oben oder unten positionierten Rastfenstern für Verriegelung passend für Gegenstecker nach RAST 5 mit Kodierung 0A wie z. B.
CoHaMo YY-A5002-H03-K01 bzw. Lumberg 3623 03 K01

Materialnummer für Gegenstecker:

2431045025

- $\begin{tabular}{ll} \hline \bf 3 & Power supply AC \\ \hline \end{tabular}$
- 2 Schutzleiter / protective earth
- 1 Power supply AC

2 Netzanschlussstecker X


3-polige Stiftleiste im Rastermaß 6,35 mm in 90° abgewinkelter / liegender Ausführung passend fuer Gegenstecker

z. B. Tyco Universal MATE-N-LOK

Bestellnummer: 1586847-1 und 3 x Buchse 926882-1

Materialnummer für Gegenstecker:

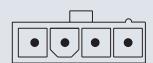
Steckergehäuse 2430945012; Crimpbuchse 2430745002/3

- (3) Schutzleiter / protective earth
- 2 Power supply AC
- 1 Power supply AC

3 Schnittstellenstecker W

4-polige Stiftleiste im Rastermaß 4,2 mm in 90° abgewinkelter / liegender Ausführung passend für Gegenstecker z. B. Stocko STO-FIT, CoHaMo

Bestellnummer Stocko:


EH 705-004-004-960 und 3x Buchse RBB 8230.120

Bestellnummer CoHaMo:

YY-5700-H04AS-GT und 3x Buchse YY-5700-TTAMA

Materialnummer für Gegenstecker:

Steckergehäuse 2431045201; Crimpbuchse 2430045116

- 4 PWM Input
- 3 Power supply (GND)
- (2) Hall Sensor OUT
- (1) NC

4 Schnittstellenstecker W

5-polige Stiftleiste im Rastermaß 4,2 mm in 90° abgewinkelter / liegender Ausführung passend für Gegenstecker z. B. Stocko STO-FIT, CoHaMo

Bestellnummer Stocko:

EH 705-005-004-960 und 5 x Buchse RBB 8230.120

Bestellnummer CoHaMo:

YY-5700-H05AS-GT und 5x Buchse YY-5700-TTAMA

Materialnummer für Gegenstecker:

Steckergehäuse 2431045200; Crimpbuchse 2430045116

- (5) Power supply (GND)
- 4 PWM Input
- (3) NC
- (2) Hall Sensor OUT
- 1 Power supply +

5 Schnittstellenstecker W

5-polige Stiftleiste im Rastermaß 4,2 mm in 90° abgewinkelter / liegender Ausführung passend für Gegenstecker nach RAST 4.2 z. B. Stocko STO-FIT, CoHaMo

Bestellnummer Stocko:

EH 705-005-004-960 und 5 x Buchse RBB 8230.120

Bestellnummer CoHaMo:

YY-5700-H05AS-GT und 5x Buchse YY-5700-TTAMA

Materialnummer für Gegenstecker:

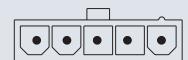
Steckergehäuse 2431045200; Crimpbuchse 2430045116

- 5 Power supply (GND)
- 4 PWM Input
- (3) Input 0-10 V DC Control
- (2) Hall Sensor OUT
- 1 Power supply +

6 Schnittstellenstecker W

5-polige Stiftleiste im Rastermaß 4,2 mm in 90° abgewinkelter / liegender Ausführung passend für Gegenstecker z. B. Stocko STO-FIT, CoHaMo

Bestellnummer Stocko:

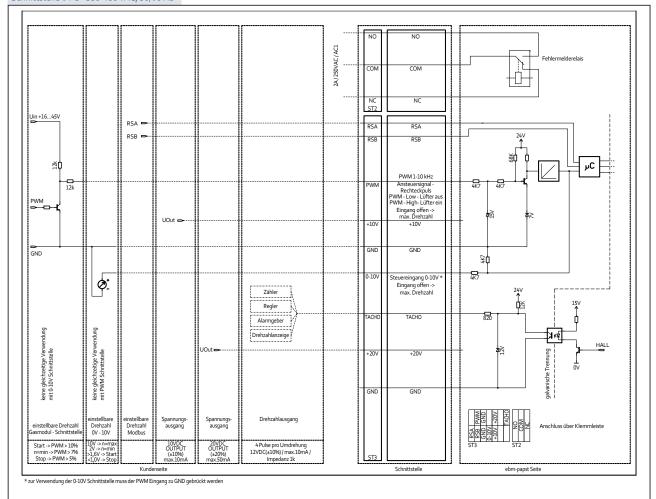

EH 705-005-004-960 und 5 x Buchse RBB 8230.120

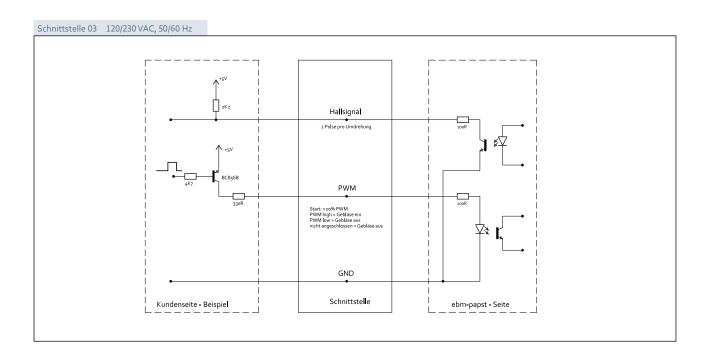
Bestellnummer CoHaMo:

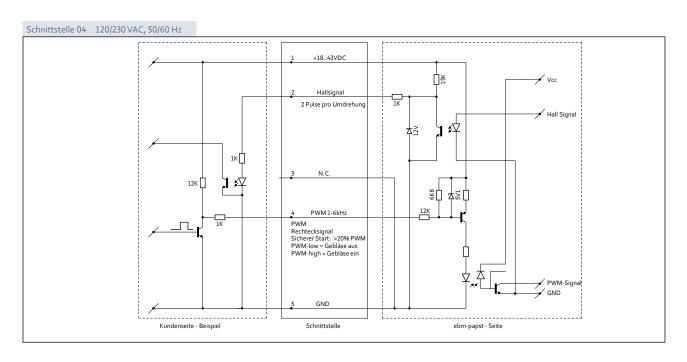
Y-5700-H05AS-GT und 5x Buchse YY-5700-TTAMA

Materialnummer für Gegenstecker:

Steckergehäuse 2431045200; Crimpbuchse 2430045116

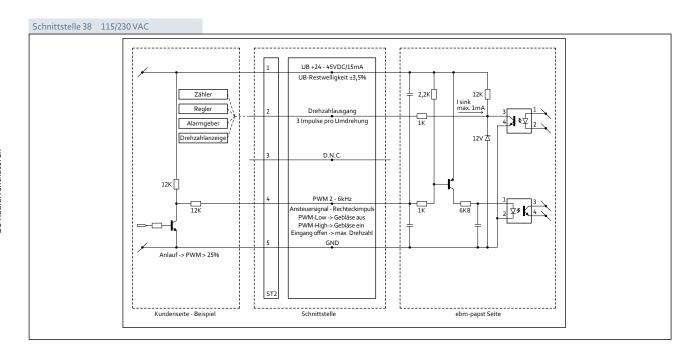

- (5) Power supply (GND)
- (4) PWM Input
- (3) Input 0-10V DC Control
- 2 Hall Sensor OUT
- 1 Voltage Output

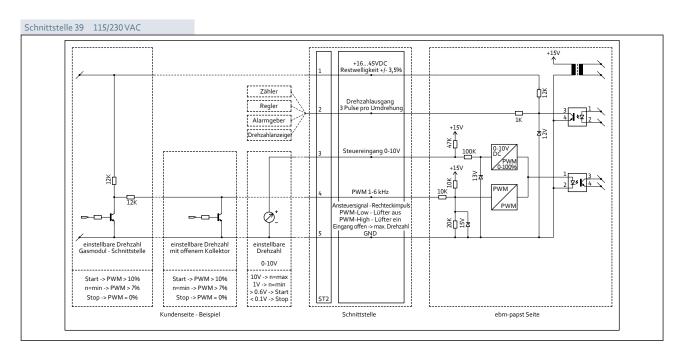

Elektrische Schnittstellen


	/G 71	/G 100	/G 108	NRG 118	RG 148	NRG 137	RG 175	G1G 170	G3G 200	G3G 250	/G 250	/G 315	VG 450
	_	_	_	_	Œ	_	Œ	O	0	O	_	_	_
Schnittstelle 04600451	03	03	03	04	04	04	04	38	39	39	64	61	63

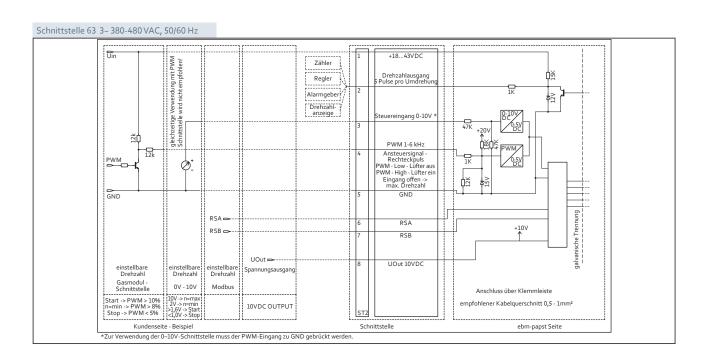
Schnittstelle 64 3~ 380-480 VAC, 50/60 Hz

Weitere Ausführungen sind auf Anfrage erhältlich.




Weitere Ausführungen sind auf Anfrage erhältlich.

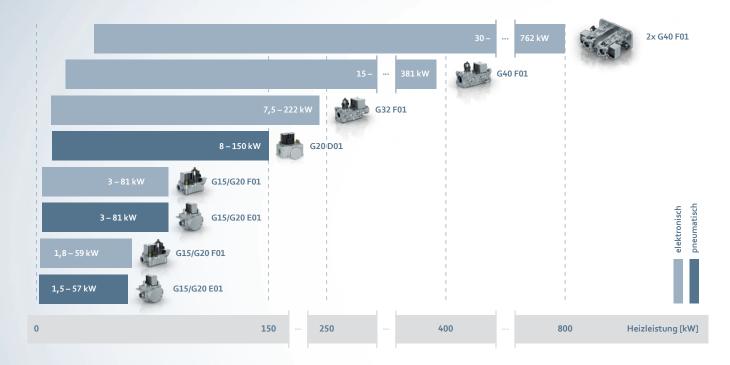
51


Elektrische Schnittstellen

Weitere Ausführungen sind auf Anfrage erhältlich.

Schnittstelle 61 3~ 380-480 VAC, 50/60 Hz +18...43VDC Zähler 竨 Regler Drehzahlausgang 5 Pulse pro Umdrehung Alarmgeber Drehzahlanzeige N.C. +20V ↑ □ ₫₽ PWM 1-6 kHz euersignal - Rechteckp PWM PWM-Low - fan off PWM-High - fan on ang offen -> max. Dreh: 対 GND GND galvanische Trennung RSA einstellbare Drehzahl Gasmodul - Schnittstelle Anschluss über Klemmleiste Start -> PWM > 12% n=min -> PWM > 10% Stop-> PWM < 8% einstellbare Drehzahl empfohlener Kabelquerschnitt 0,5 - 1mm² ST2 Modbus Kundenseite - Beispiel Schnittstelle ebm-papst Seite

Weitere Ausführungen sind auf Anfrage erhältlich.


Ventile

Pneumatischer und elektronischer Verbund

Der Haupteinsatzbereich unserer Gasventile sind Brennwertanwendungen der häuslichen Heizungstechnik im unteren bis mittleren Leistungsbereich. Unsere Gasventile gewährleisten eine präzise Einstellung des Gas-Luft-Verhältnisses.

Die Gasventile G20 D01 und G15/G20 E01 sind geeignet für Brennwertgeräte mit pneumatischer Verbundregelung. Unabhängig vom erzeugten Saugdruck des Vormischgebläses regeln diese Gasventile den Offsetdruck stets auf null und kompensieren darüber hinaus auftretende Druckschwankungen im Versorgungsnetz.

Der Offset (Nullpunkt-Verschiebung) kann am Servoregler eingestellt werden. Gleichzeitig wird die gewünschte Gasmenge mithilfe eines integrierten Drosselelements justiert. Je nach Ausführung kann bei Bedarf am Servoregler auch ein Referenzdruck angeschlossen werden. Die Gasventile G15/G20 F01, G32 F01 und G40 F01 sind geeignet für Brennwertgeräte mit elektronischer Verbundregelung. Unabhängig von Gasqualität und auftretenden Druckschwankungen im Versorgungsnetz, regelt dieses Gasventil ein konstantes Gas-Luft-Verhältnis ohne mechanische Einstellungen am Gasventil.

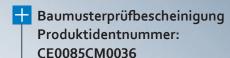
Sonstige Hinweise - Arbeiten an der Gasarmatur dürfen nur durch autorisiertes Fachpersonal erfolgen. - Bitte unbedingt die entsprechenden Einbauhinweise beachten. - Entsprechende Unterlagen mit Sicherheitshinweisen sind auf Anfrage oder im Internet verfügbar.

Unser Gasventilprogramm ist für die in der Gasheiztechnik verwendeten Erd- und Flüssiggase geeignet. Das gilt auch für Wasserstoff. Alle unsere Gasventile sind DVGW-geprüft für eine Beimischung von 20 Prozent des grünen Energieträgers der Zukunft.

+ Einbaulagen

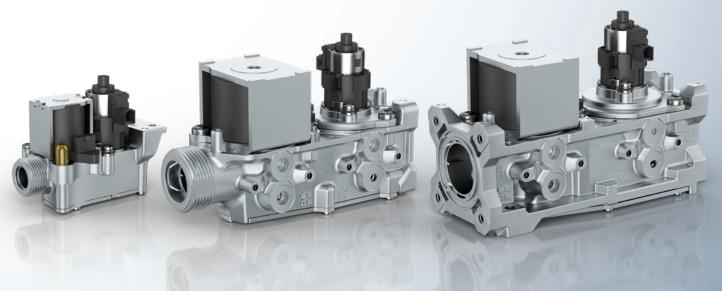
Spule senkrecht stehend bis maximal waagrecht liegend

- Spule nach unten zeigend nicht zulässig



Baumusterprüfbescheinigung für Nordamerika (USA & Kanada): Master Contract No. 172723

Zutreffende Normen: ANSI Z21.78 · CSA 6.20 (Reaffirmed):

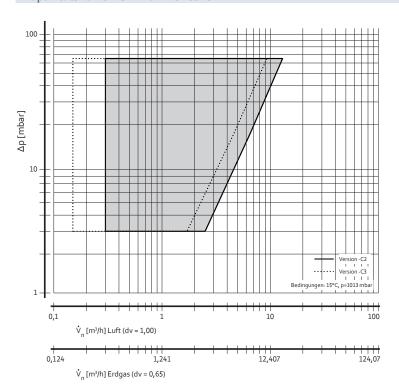

Combination Gas Controls for gas appliances

Zulassungen in den wichtigsten Gasverbrauchsländern vorhanden.

Zutreffende Richtlinien und Normen: EU/2016/426 Gasgeräteverordnung

- -EN126: Mehrfachstellgeräte für Gasgeräte
- EN13611: Sicherheits-, Regel- und Steuereinrichtungen für Gasbrenner und Gasgeräte – Allgemeine Anforderungen
- EN161: Automatische Absperrventile für Gasbrenner und Gasgeräte
- EN88-1: Druckregler und zugehörige Sicherheitseinrichtungen für Gasgeräte -Teil 1: Druckregler für Eingangsdrücke bis einschließlich 50 kPa

Brennwerttechnik · Ausgabe 2022-06


Ventil pneumatischer Verbund G15/G20 E01

Mehr unter

www.ebmpapst.com

Kapazitätskurve – GXXE01-BCXCS-CX

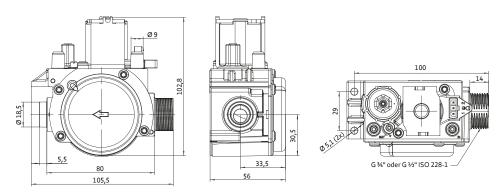
Material/Oberfläche

■ Gehäuse: Aluminium

Mechanische Daten

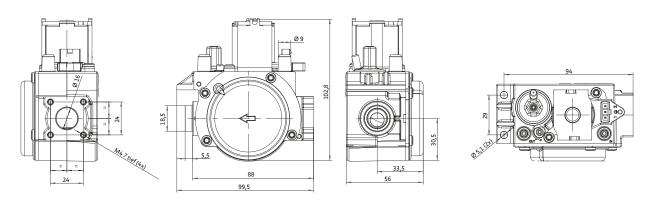
- Schutzart: IP40 in Kombination mit einem geeigneten Stecker
- Zulässige Gasfamilien: II + III (nach EN 437)
- Maximaler Eingangsdruck: 65 mbar (CE), 0,5 psi (CSA)
- Zul. Umgebungstemperatur: 0 °C bis 60 °C; erweiterter Temperaturbereich auf Anfrage, abhängig vom Zeit-Temperatur-Profil
- Zul. Lagertemperatur: -25 °C bis 70 °C
- Offsetkorrektur: +/- 20 Pa
- Eingang (Gasanschluss): Außengewinde G¾" oder G½" (EN ISO 228) oder 4 x M4-Befestigungslöcher (optional)
- Ausgang: Außengewinde G³/₄" (EN ISO 228), ebm-papst spezifischer Schnellverschluss
- Sicherheitsventile:
 Ko-axiales Design: Ventilklasse B/C nach EN161

Elektrische Daten

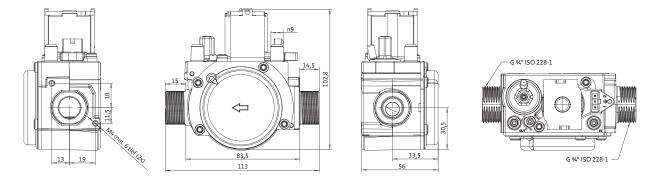

- Konstruiert f
 ür Schutzklasse I
- Elektrischer Anschluss: Steckergehäuse mit Rastermaß 4,20 mm

V VA mbar m³/h Pa s kg Nenndaten 230 RAC 9,8 DN15/20 65 3,4 Klasse B/C -40 <1 0,57 120 RAC 9,8 DN15/20 65 3,4 Klasse B/C -40 <1 0,57 24 RAC 9,8 DN15/20 65 3,4 Klasse B/C -40 <1 0,57 24 DC 9,8 DN15/20 65 3,4 Klasse B/C -40 <1 0,57 22 DC 11,9 DN15/20 65 3,4 Klasse B/C -40 <1 0,57	Тур	Spannung	Leistungsaufnahme	Nennweite	Maximaler Eingangsdruck	Durchfluss (bei Δp = 5 mbar)	Automatische Absperrventile (EN161)	Minimaler Signaldruck	Öffnungs- und Schließzeit	Masse	
230 RAC 9,8 DN15/20 65 3,4 Klasse B/C -40 <1 0,57		٧	VA		mbar	m³/h		Pa	S	kg	
GXXE01-BCXCS-CX 120 RAC 9,8 DN15/20 65 3,4 Klasse B/C -40 <1	Nenndaten										
GXXE01-BCXCS-CX 24 RAC 9,8 DN15/20 65 3,4 Klasse B/C -40 <1 0,57 24 DC 9,8 DN15/20 65 3,4 Klasse B/C -40 <1 0,57		230 RAC	9,8	DN15/20	65	3,4	Klasse B/C	-40	<1	0,57	
24 DC 9,8 DN15/20 65 3,4 Klasse B/C -40 <1 0,57		120 RAC	9,8	DN15/20	65	3,4	Klasse B/C	-40	<1	0,57	
	GXXE01-BCXCS-CX	24 RAC	9,8	DN15/20	65	3,4	Klasse B/C	-40	<1	0,57	
22 DC 11,9 DN15/20 65 3,4 Klasse B/C -40 <1 0,57		24 DC	9,8	DN15/20	65	3,4	Klasse B/C	-40	<1	0,57	
		22 DC	11,9	DN15/20	65	3,4	Klasse B/C	-40	<1	0,57	

Änderungen vorbehalten.


Ausführung G ¾"-Anschluss (optional auch G ½")

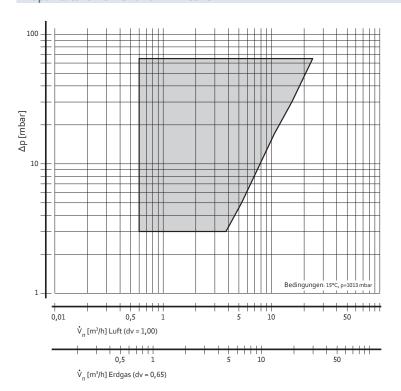
Maßangaben in mm


Ausführung 4 x M4-Anschluss (geeignet für NPT 1/2-Flansch)

Maßangaben in mm

Ausführung 2x G ¾"-Anschluss

Maßangaben in mm


Ventil pneumatischer Verbund

Mehr unter

www.ebmpapst.com

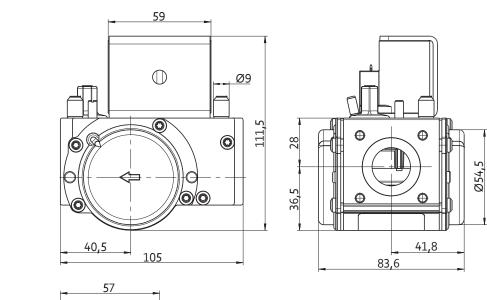
Kapazitätskurve – G20D01-BBXCS-CX

Material/Oberfläche

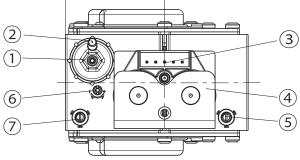
■ Gehäuse: Aluminium

Mechanische Daten

- Schutzart: IP40 in Kombination mit einem geeigneten Stecker
- Zulässige Gasfamilien: II + III (nach EN 437)
- Maximaler Eingangsdruck: 65 mbar (CE), 0,5 psi (CSA)
- Zul. Umgebungstemperatur: 0°C bis 60°C; erweiterter Temperaturbereich auf Anfrage, abhängig vom Zeit-Temperatur-Profil
- Zul. Lagertemperatur: -25 °C bis 70 °C
- Offsetkorrektur: +/- 20 Pa
- Eingang (Gasanschluss):
 4 x M5-Befestigungslöcher (Lochabstand 36 mm)
- Ausgang:4 x M5-Befestigungslöcher(Lochabstand 36 mm)
- Sicherheitsventile: Ventilklasse B/B nach EN161


Elektrische Daten

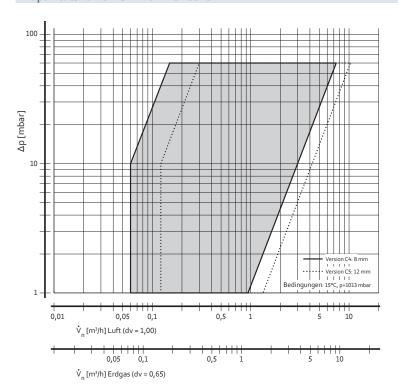
- Konstruiert f
 ür Schutzklasse I
- Elektrischer Anschluss: Steckergehäuse mit Rastermaß 5,08 mm


Тур	Spannung	Leistungsaufnahme	Nennweite	Maximaler Eingangsdruck	Durchfluss (bei Δp = 5 mbar)	Automatische Absperrventile (EN161)	Minimaler Signaldruck	Öffnungs- und Schließzeit	Masse	
	٧	VA		mbar	m³/h		Pa	5	kg	
Nenndaten										
	230 RAC	2 x 12,5	DN20	65	5,3	Klasse B/B	-40	<1	1,3	
COODOL BRYCE CY	120 RAC	2 x 12,5	DN20	65	5,3	Klasse B/B	-40	<1	1,3	
G20D01-BBXCS-CX	24 RAC	2 x 12,5	DN20	65	5,3	Klasse B/B	-40	<1	1,3	
	24 DC	2 x 12,5	DN20	65	5,3	Klasse B/B	-40	<1	1,3	

Änderungen vorbehalten.

Technische Zeichnung Maßangaben in mm

- ① Offseteinstellung Druckregler
- 2 Druckausgleichs-Stutzen
- 3 Elektrischer Anschluss
- 4 Magnetspule
- 5 Druckmessstutzen P₁
- 6 Hauptmengendrossel
- 7 Druckmessstutzen P₂


Ventil elektronischer Verbund G15/G20 F01

Mehr unter

www.ebmpapst.com

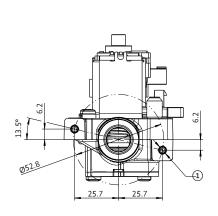
Kapazitätskurve – GXXF01-BCXCS-CX

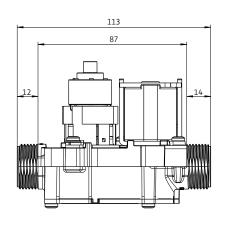
Material/Oberfläche

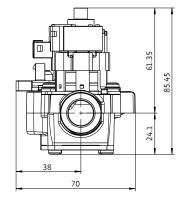
■ Gehäuse: Aluminium

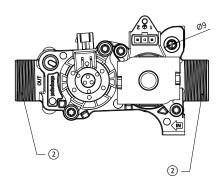
Mechanische Daten

- Schutzart: IP40 in Kombination mit einem geeigneten Stecker
- Zulässige Gasfamilien: II + III (nach EN 437)
- Maximaler Eingangsdruck: 60 mbar (CE), 0,5 psi (CSA)
- Zul. Umgebungstemperatur: 0 °C bis 60 °C; erweiterter Temperaturbereich auf Anfrage, abhängig vom Zeit-Temperatur-Profil
- Zul. Lagertemperatur: -25 °C bis 70 °C
- Eingang (Gasanschluss): Außengewinde G ½" (DN 15) oder G ¾" (DN 20) (EN ISO 228)
- Ausgang: Außengewinde G¾" (EN ISO 228), ebm-papst spezifischer Schnellverschluss
- Sicherheitsventile:
 Ko-axiales Design: Ventilklasse B/C nach EN161


Elektrische Daten

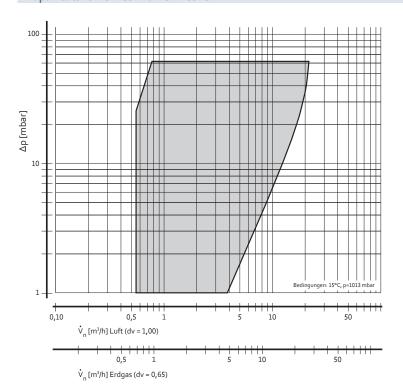

- Konstruiert f
 ür Schutzklasse I
- Elektrischer Anschluss: Steckergehäuse mit Rastermaß 4,20 mm


Тур	Spannung	Leistungsaufnahme	Nennweite	Maximaler Eingangsdruck	Durchfluss (bei Ap = 5 mbar) Schrittmotormodul mit Nennweite 8 mm	Durchfluss (bei Ap = 5 mbar) Schrittmotormodul mit Nennweite 12 mm	Automatische Absperrventile (EN161)	Öffnungs- und Schließzeit	Masse	
	V	VA		mbar	m³/h	m³/h		S	kg	
Nenndaten										
	230 RAC	9,8	DN15/20	60	2,1	2,9	Klasse B/C	<1	0,47	
	120 RAC	9,8	DN15/20	60	2,1	2,9	Klasse B/C	<1	0,47	
GXXF01-BCXCS-CX	24 RAC	9,8	DN15/20	60	2,1	2,9	Klasse B/C	<1	0,47	
	24 DC	9,8	DN15/20	60	2,1	2,9	Klasse B/C	<1	0,47	
	22 DC	11,9	DN15/20	60	2,1	2,9	Klasse B/C	<1	0,47	


Änderungen vorbehalten.

Technische Zeichnung Maßangaben in mm

- 1 M5 2x min. 8 tief
- ② G 3/4" ISO 228-1


Ventil elektronischer Verbund

Mehr unter

www.ebmpapst.com

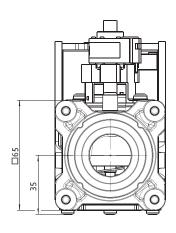
Kapazitätskurve – G32F01-CBXCS-CX

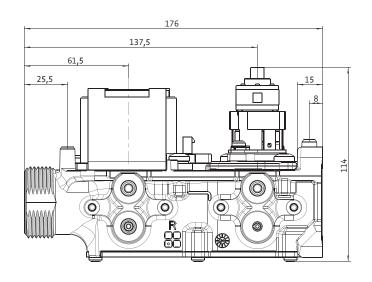
Material/Oberfläche

■ Gehäuse: Aluminium

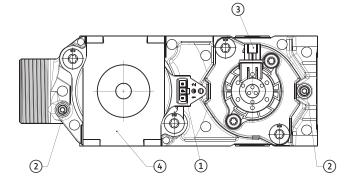
Mechanische Daten

- Schutzart: IP40 in Kombination mit einem geeigneten Stecker
- Zulässige Gasfamilien:I + II + III (nach EN 437)
- Maximaler Eingangsdruck: 60 mbar (CE), 0,5 psi (CSA)
- Zul. Umgebungstemperatur: 0 °C bis 60 °C; erweiterter Temperaturbereich auf Anfrage, abhängig vom Zeit-Temperatur-Profil
- Zul. Lagertemperatur: -25 °C bis 70 °C
- Eingang (Gasanschluss): Außengewinde G 1 1/4" (EN ISO 228)
- Sicherheitsventile:
 Ko-axiales Design: Ventilklasse C/B nach EN161
- Schnittstelle zum Anschluss mechanischer Druckwächter: Eingangsdruck; Mittelraumdruck
- Druckmessstutzen: Eingangs- und Ausgangsdruck


Elektrische Daten

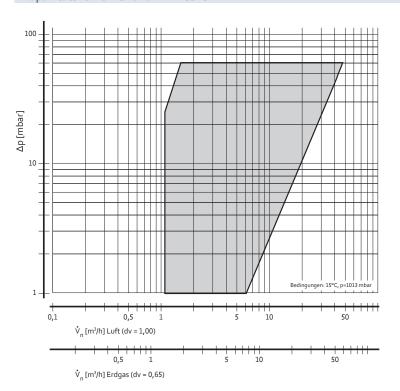

- Konstruiert f
 ür Schutzklasse I
- Elektrischer Anschluss: Sicherheitsmodul: geeignet für Steckergehäuse mit Raster 4,20mm (u. A. Stocko STO-FIT System, EH 705-103; Würth WR-MPC4 Baureihe, Artikelnr. 649 003 013 322)
- Schrittmotormodul: geeignet für Steckergehäuse Stocko-Grid MH790-06-001

Тур	< Spannung	S Leistungsaufnahme	Nennweite	Maximaler ze Eingangsdruck	Durchfluss (bei \text{\Def D} = 5 \text{mbar})	Automatische Absperrventile (EN161)	o Öffnungs- und Schließzeit	kg	
Nenndaten									
	230 RAC	14	DN32	60	9,3	Klasse C/B	<1	1,55	
G32F01-CBXCS-CX	120 RAC	14	DN32	60	9,3	Klasse C/B	<1	1,55	
	24 DC	14.5	DN32	60	9,3	Klasse C/B	<1	1,55	


Änderungen vorbehalten.

Technische Zeichnung Maßangaben in mm

- 1 Elektrischer Anschluss Sicherheitsventil
- 2 Druckmessstutzen
- 3 Elektrischer Anschluss Regelventil
- 4 Magnetspule


Ventil elektronischer Verbund

Mehr unter

www.ebmpapst.com

Kapazitätskurve – G40F01-BBXCS-CX

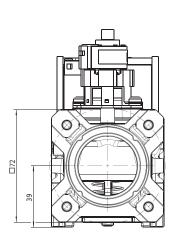
Material/Oberfläche

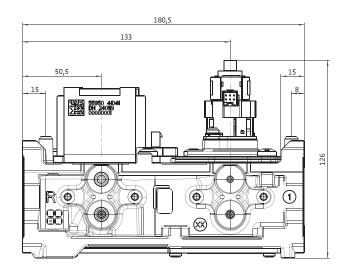
■ Gehäuse: Aluminium

Mechanische Daten

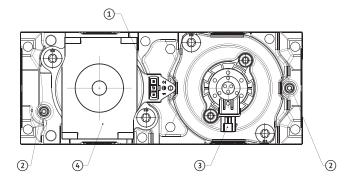
- Schutzart: IP40 in Kombination mit einem geeigneten Stecker
- Zulässige Gasfamilien: I + II + III (nach EN 437)
- Maximaler Eingangsdruck: 60 mbar (CE), 0,5 psi (CSA)
- Zul. Umgebungstemperatur: 0 °C bis 60 °C; erweiterter Temperaturbereich auf Anfrage, abhängig vom Zeit-Temperatur-Profil
- Zul. Lagertemperatur: -25 °C bis 70 °C
- Eingang (Gasanschluss): Flanschanschluss 4 x Befestigungslöcher für selbstfurchende Schraube (Nenndurchmesser 6 mm); Lochabstand □52,33 mm; Lochkreis Durchmesser 74 mm; Optional Eingangsflansch G 1 ½"
- Ausgang: Flanschanschluss 4 x Befestigungslöcher für selbstfurchende Schraube (Nenndurchmesser 6 mm); Lochabstand

 52,33 mm; Lochkreis Durchmesser 74 mm
- Sicherheitsventile:
 Ko-axiales Design: Ventilklasse B/B nach EN161
- Schnittstelle zum Anschluss mechanischer Druckwächter: Eingangsdruck; Mittelraumdruck für VPS (optional)
- Druckmessstutzen: Eingangs- und Ausgangsdruck


Elektrische Daten

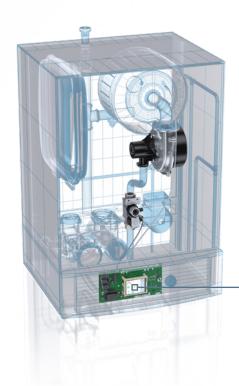

- Konstruiert f
 ür Schutzklasse I
- Elektrischer Anschluss: Sicherheitsmodul: geeignet für Steckergehäuse mit Raster 4,20 mm (u. A. Stocko STO-FIT System, EH 705-103; Würth WR-MPC4 Baureihe, Artikelnr. 649 003 013 322)
- Schrittmotormodul: geeignet für Steckergehäuse Stocko-Grid MH790-06-001

Тур	Spannung	Leistungsaufnahme	Nennweite	Maximaler Eingangsdruck	Durchfluss (bei Ap = 5 mbar)	Automatische Absperrventile (EN161)	Öffnungs- und Schließzeit	Masse	
	V	VA		mbar	m³/h		S	kg	
Nenndaten									
	230 RAC	17,5	DN40	60	14	Klasse B/B	<1	1,97	
G40F01-BBXCS-CX	120 RAC	17,5	DN40	60	14	Klasse B/B	<1	1,97	
	24 DC	21,7	DN40	60	14	Klasse B/B	<1	1,97	


Änderungen vorbehalten.

Technische Zeichnung Maßangaben in mm

- 1 Elektrischer Anschluss Sicherheitsventil
- 2 Druckmessstutzen
- 3 Elektrischer Anschluss Regelventil
- 4 Magnetspule


Brennersteuerung

Intelligent und individuell anpassbar

Wir liefern die ideale Elektronik zur Steuerung der Zündung, Leistungsregulierung und Überwachung der Funktion des Brennwertgeräts sowie die Benutzereingabeoberfläche zur komfortablen Steuerung der Raum- und Warmwassertemperatur. Unsere Produktpalette, bestehend aus erprobter Hard- und Software, ermöglicht ein zuverlässiges Betriebsverhalten und kurze Entwicklungszyklen. Die flexible Software-Architektur ermöglicht eine einfache Integration der Schnittstelle. Außerdem wird, wie auch bei unseren Gebläsen, Wert auf möglichst niedrigen Energieverbrauch gelegt.

Die Brennersteuerungen BCU 100 sind speziell für den Einsatz in Wandgeräten konzipiert: kompakte Bauform und hohe Integration aller elektrotechnischen Funktionen eines modernen Wandbrennwertgerätes.

Die Brennersteuerungen BCU 900 findet insbesondere Anwendung in der gewerblichen Gebäudetechnik: hoher Funktionsumfang mit flexiblen Einstellmöglichkeiten zur Konfiguration vieler Systeme.

Kompakte Ausführung

- Umfassende elektronische Funktionen eines Gas-Brennwertkessels
- Solid-State-Design für hohe Zuverlässigkeit, hohe Lebensdauer und geringen Platzbedarf
- Integrierte Benutzeroberfläche
- Platzsparende und robuste elektrische Anschlüsse mit Leiterplattendirektstecker

Optimal vernetzt

- + Standardschnittstellen für Raumgeräte
- RS 485-Schnittstelle für benutzerdefinierte Steuerelemente z. B. Gebäudemanagement-Systeme
- Steckmodule für verschiedene drahtlose Kommunikationsmöglichkeiten
- Vorausschauende Wartung durch Vorwarnmeldungen
- + Fernzugriff für eine verbesserte Diagnose

Brennerteuerungen

Brennersteuerung – Haustechnik

Technische Daten

- Weitspannungsnetzteil 170 264 V AC mit Spannungsüberwachung
- PWM- oder LIN-Schnittstelle für Gebläseund Pumpensteuerung
- Umlenkventil-Schrittmotor-Schnittstelle 24 V DC
- Warmwasserturbine 5 V DC
- Wasserdruckschalter 5 V DC
- Ansteuerung von pneumatischem oder elektronischem Gasventil 24 V DC
- Ext. Zündung 230 V AC
- Vorlauf-, Rücklauf-, Abgas-, Warmwasserund Außentemperatursensoreingänge
- Analoger Ionisationseingang, alle Netze, phasenunabhängig

Mechanische Daten

- Rast-2,5 und rast-2,5-power Direktanschluss
- Leiterplattenabmessungen (LxBxH): 200x100x26 mm

Vorteile der Brennersteuerung

- ✓ Pneumatische (CleanEco) oder elektronische (CleanVario) Gas-Luft-Verhältnisregelung
- Brennerstart und -überwachung
- ✓ Gebläsesteuerung
- Temperaturregelung und Sicherheitstemperaturbegrenzer
- Warmwasserregelung und zentrale Heizungssteuerung
- Integrierte flexible Benutzeroberfläche und verschiedene Anzeigetechnologien für Standard- und kundenspezifische Designs verfügbar
- Zusammenführen von bewährten und geprüften Hard- und Softwaremodulen aus einem umfangreichen Baukasten
- Flexible Variantenproduktion durch unterschiedliche Bestückung der elektronischen Komponenten
- ✓ Variantenmanagement durch Auswahl umfassender Parameterbänke
- Eine Produktplattform für verschiedene Methoden zur Steuerung des Gas-Luft-Verhältnisses

Brenne

Brennersteuerung – Gewerbliche Gebäudetechnik

Passwortgeschützte Benutzerebenen

Inklusive Diagnose-Software und Smart-App für die Fernbedienung

Brennersteuerung – Gewerbliche Gebäudetechnik

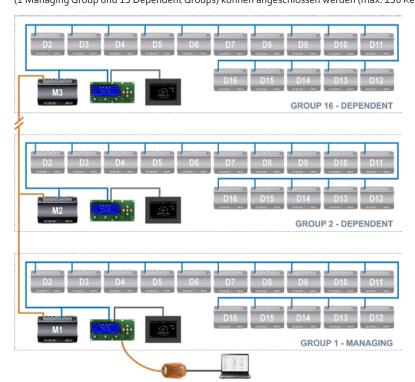
Pakete

Pak

Residential Plus

Beschreibung

- Einzelheizgeräte und Heizgerätekaskaden
- Flexible Inbetriebnahme und einfache Konfiguration
- Verschiedene Wärmebedarfsoptionen (Ein/Aus, OpenTherm, 0−10 V)
- Interner/externer Funkenzünder oder Glühzünder
- Primäre Schutzfunktionen
- Zusätzliche Sicherheits- und intelligente Steuerungsfunktione


gnose-Softwar

	Kasl	Tou	Ben	AL-I	M	Ethe	Diac	Smg	
kete									Ī
mmercial Plus	16 Kessel ×16 Module	✓	900PB Display + 900TS Touchscreen	✓	✓	✓	✓	✓	
mmercial	max. 16 Kessel	-	900PB Display	✓	✓	optional	✓	✓	

900LB Display

Commercial Plus mit integrierter Kaskadensteuerung: Bis zu 16 Kessel x 16 Module (1 Managing Group und 15 Dependent Groups) können angeschlossen werden (max. 256 Kessel).

nur Einstellungen

Managing Group 1: M1, D2, D3, ... Dependent Group 2: M2, D2, D3, ...

900PB Display (Cover assembly)

900TS Touchscreen

900LB Display

Brennwerttechnik

Kontakte – Weltweit

ebmpapst

Immer den richtigen Ansprechpartner finden!

www.ebmpapst.com/kontakt

Deutschland

ebm-papst Mulfingen GmbH & Co. KG

Bachmühle 2 74673 Mulfingen GERMANY Phone +49 7938 81-0 Fax +49 7938 81-110 info1@de.ebmpapst.com

ebm-papst St. Georgen GmbH & Co. KG

Hermann-Papst-Straße 1 78112 St. Georgen GERMANY Phone +49 7724 81-0 Fax +49 7724 81-1309 info2@de.ebmpapst.com

ebm-papst Landshut GmbH

Hofmark-Aich-Straße 25 84030 Landshut GERMANY Phone +49 871 707-0 Fax +49 871 707-465 info3@de.ebmpapst.com www.ebmpapst.com 2022-06 Only as po

ebmpapst

engineering a better life

ebm-papst Landshut GmbH

Hofmark-Aich-Straße 25 84030 Landshut Germany Phone +49 871 707-0 Fax +49 871 707-465 info3@de.ebmpapst.com